出版社:高等教育出版社
年代:2010
定价:48.0
本书作者Jean-Pierre Demailly 教授是法国格勒诺布尔第一大学数学系教授,著名数学家,1994年获选为法国科学院院士。本书讲述代数几何中的分析方法,该方法广泛地应用于线性系列,代数向量丛的消失定理等。
introduction
chapter 1. preliminary material: cohomology, currents
1.a. dolbeault cohomology and sheaf cohomology
1.b. plurisubharmonic functions
1.c. positive currents
chapter 2. lelong numbers and intersection theory
2.a. multiplication of currents and monge-ampere operators
2.b. lelong numbers
chapter 3. hermitian vector bundles, connections and curvature
chapter 4. bochner technique and vanishing theorems
4.a. laplace-beltrami operators and hodge theory
4.b. serre duality theorem
4.cbochner-kodaira-nakano identity on kahler manifolds
4.d. vanishing theorems
chapter 5. l2 estimates and existence theorems
5.a. basic l2 existence thcorcms
5.b. multiplier ideal sheaves and nadel vanishing theorem
chapter 6. numerically effective andpseudo-effective line bundles
6.a. pseudo-effcctive line bundles and metrics with minimal singularities
6.b. nef line bundles
6.c. description of thc positive cones.
6.d. the kawamata-viehweg vanishing theorem
6.e. a uniform global generation property due to y.t. siu
chapter 7. a simple algebraic approach to fujitas conjecture
chapter 8. holomorphic morse inequalities
8.a. general analytic statement on compact complex manifolds
8.b. algebraic counterparts of the holomorphic morse inequalities
8.c. asymptotic cohomology groups
8.d. transcendental asymptotic cohomology unctions
chapter 9. effective version of matsusakas big theorem
chapter 10. positivity concepts for vector bundles
chapter 11. skodas l2 estimates for surjective bundle morphisms
11.a. surjectivity and division theorems
11.b. applications to local algebra: the briancon-skoda theorem
chapter 12. the ohsawa-takegoshi l2 extension theorem
12.a. the basic a priori inequality
12.b. abstract l2 existence theorem for solutions of0-equations
12.c. the l2 extension theorem
12.d. skodas division theorem for ideals of holomorphic functions
chapter 13. approximation of closed positive currents by analytic cycles
13.a. approximation of plurisubharmonic functions via bergman kernels
13.b. global approximation of closed (1,1)-currents on a compact complex manifold
13.c. global approximation by divisors
13.d. singularity exponents and log canonical thresholds
13.e. hodge conjecture and approximation of (p, p)- currents
chapter 14. subadditivity of multiplier ideals and fujitas approximate zariski decomposition
chapter 15. hard lefschetz theorem
with multiplier ideal sheaves
15.a. a bundle valued hard lefsehetz theorem
15.b. equisingular approximations of quasi plurisubharmonic functions
15.c. a bochner type inequality
15.d. proof of theorem 15.1
15.e. a counterexample
chapter 16. invariance of plurigenera of projective varieties
chapter 17. numerical characterization of the kahler cone
17.a. positive classes in intermediate (p, p)-bidegrees
17.b. numerically positive classes of type (1,1)
17.c. deformations of compact kahler manifolds
chapter 18. structure of the pseudo-effective cone and mobile intersection theory
18.a. classes of mobile curves and of mobile (n- 1,n- 1)-currents
18.b. zariski decomposition and mobile intersections
18.c. the orthogonality estimate
18.d. dual of the pseudo-effective cone
18.e. a volume formula for algebraic (1,1)-classes on projective surfaces
chapter 19. super-canonical metrics and abundance
19.a. construction of super-canonical metrics
19.b. invariance of plurigenera and positivity of curvature of super-canonical metrics
19.c. tsujis strategy for studying abundance
chapter 20. sius analytic approach and pauns non vanishing theorem
references
This volume is an expansion of lectures given by the author at the Park City Mathematics Institute in 2008 as well as in other places. The main purpose of the book is to describe analytic techniques which are useful to study questions such as linear series, multiplier ideals and vanishing theorems for algebraic vector bundles. The exposition tries to be as condensed as possible, assuming that the reader is already somewhat acquainted with the basic concepts pertaining to sheaf theory,homological algebra and complex differential geometry. In the final chapters, some very recent questions and open problems are addressed, for example results related to the finiteness of the canonical ring and the abundance conjecture, as well as results describing the geometric structure of Kahler varieties and their positive cones.
书籍详细信息 | |||
书名 | 代数几何中的解析方法站内查询相似图书 | ||
9787040305319 如需购买下载《代数几何中的解析方法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 高等教育出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 48.0 | 语种 | 英文 |
尺寸 | 24 × 17 | 装帧 | 精装 |
页数 | 印数 | 1500 |
代数几何中的解析方法是高等教育出版社于2010.9出版的中图分类号为 O187 的主题关于 代数几何-研究生-教材-英文 的书籍。
扶磊, 著
(美) 杰弗里·麦克尼尔 (Jeffery McNeal) , (罗) 米尔恰·穆斯塔塔 (Mircea Mustata) , 著
(美) 威廉·富尔顿, 著
(美) P.格里菲思 (Phillip Griffiths) , (美) J.哈里斯 (Joseph Harris) , 著
(英) 格里菲思 (Griffiths,P.) , (英) 哈里斯 (Harris,J.) , 著
(美) 史密斯 (Smith,K.E.) , 著
(德) 哈德尔 (Harder,G.) , 著
佩捷, 吴雨宸, 李舒畅, 编著
(英) 里德 (Reid,M.) , 著