出版社:科学出版社
年代:2008
定价:72.0
微分代数方程是一个非常重要的研究方向,目前的科研非常活跃。该书是这一领域具有很高学术水平的著作,对国内从事该领域学习和研究的学生及科研人员将会有很高的参考价值。
ListofFigures
ListofTables
Preface
PartⅠ:Introduction
1OrdinaryDifferentialEquations
1.1IVPs
1.2BVPs
1.3Differential-AlgebraicEquations
1.4FamiliesofApplicationProblems
1.5DynamicalSystems
1.6Notation
PartⅡ:InitialValueProblems
2OnProblemStability
2.1TestEquationandGeneralDefinitions
2.2Linear,Constant-CoefficientSystems
2.3Linear,Variable-CoefficientSystems
2.4NonlinearProblems
2.5HamiltonianSystems
2.6NotesandReferences
2.7Exercises
3BasicMethods,BasicConcepts
3.1ASimpleMethod:ForwardEuler
3.2Convergence,Accuracy,Consistency,andO-Stability
3.3AbsoluteStability
3.4Stiffness:BackwardEuler
3.4.1BackwardEuler
3.4.2SolvingNonlinearEquations
3.5A-Stability,StiffDecay
3.6Symmetry:TrapezoidalMethod
3.7RoughProblems
3.8Software,Notes,andReferences
3.8.1Notes
3.8.2Software
3.9Exercises
4One-StepMethods
4.1TheFirstRunge-KuttaMethods
4.2GeneralFormulationofRunge-KuttaMethods
4.3Convergence,O-Stability,andOrderforRunge-KuttaMethods
4.4RegionsofAbsoluteStabilityforExplicitRunge-KuttaMethods
4.5ErrorEstimationandControl
4.6SensitivitytoDataPerturbations
4.7ImplicitRunge-KuttaandCollocationMethods
4.7.1ImplicitRunge-KuttaMethodsBasedonCollocation
4.7.2ImplementationandDiagonallyImplicitMethods...
4.7.3OrderReduction
4.7.4MoreonImplementationandSinglyImplicitRungeKuttaMethods
4.8Software,Notes,andReferences
4.8.1Notes
4.8.2Software
4.9Exercises
5LinearMultistepMethods
5.1TheMostPopularMethods
5.1.1AdamsMethods
5.1.2BDF
5.1.3InitialValuesforMultistepMethods
5.2Order,O-Stability,andConvergence
5.2.1Order
5.2.2Stability:DifferenceEquationsandtheRootCondition
5.2.3O-StabilityandConvergence
5.3AbsoluteStability
5.4ImplementationofhnplicitLinearMultistepMethods
5.4.1FunctionalIteration
5.4.2Predictor-CorrectorMethods
5.4.3ModifiedNewtonIteration
5.5DesigningMultistepGeneral-PurposeSoftware
5.5.1VariableStep-SizeFormulae
5.5.2EstimatingandControllingtheLocalError
5.5.3ApproximatingtheSolutionatOff-StepPoints
5.6Software,Notes,andReferences
5.6.1Notes
5.6.2Software
5.7Exercises
PartⅢ:BoundaryValueProblems
6MoreBoundaryValueProblemTheoryandApplications
6.1LinearBVPsandGreensFunction.
6.2StabilityofBVPs
6.3BVPStiffness
6.4SomeReformulationTricks
6.5NotesandReferences
6.6Exercises
7Shooting
7.1Shooting:ASimpleMethodandItsLimitations
7.1.1Difficulties
7.2MultipleShooting
7.3Software,Notes,andReferences
7.3.1Notes
7.3.2Software
7.4Exercises
8FiniteDifferenceMethodsforBoundaryValueProblems
8.1MidpointandTrapezoidalMethods
8.1.1SolvingNonlinearProblems:Quasi-Linearization
8.1.2Consistency,O-Stability,andConvergence
8.2SolvingtheLinearEquations
8.3Higher-OrderMethods
8.3.1Collocation
8.3.2AccelerationTechniques
8.4MoreonSolvingNonlinearProblems
8.4.1DampedNewton
8.4.2ShootingforInitialGuesses
8.4.3Continuation
8.5ErrorEstimationandMeshSelection
8.6VeryStiffProblems
8.7Decoupling
8.8Software,Notes,andReferences
8.8.1Notes
8.8.2Software
8.9Exercises
PartⅣ:Differential-AlgebraicEquations
9MoreonDifferential-AlgebraicEquations
9.1IndexandMathematicalStructure
9.1.1SpecialDAEForms
9.1.2DAEStability
9.2IndexReductionandStabilization:ODEwithInvariant
9.2.1ReformulationofHigher-IndexDAEs
9.2.2ODEswithInvariants
9.2.3StateSpaceFormulation
9.3ModelingwithDAEs
9.4NotesandReferences
9.5Exercises
10NumericalMethodsforDifferential-AlgebraicEquations
10.1DirectDiscretizationMethods
10.1.1ASimpleMethod:BackwardEuler
10.1.2BDFandGeneralMultistepMethods
10.1.3RadauCollocationandImplicitRunge-KuttaMethods
10.1.4PracticalDifficulties
10.1.5SpecializedRunge-KuttaMethodsforHessenbergIndex-2DAEs
10.2MethodsforODEsonManifolds
10.2.1StabilizationoftheDiscreteDynamicalSystem
10.2.2ChoosingtheStabilizationMatrixF
10.3Software,Notes,andReferences
10.3.1Notes
10.3.2Software
10.4Exercises
Bibliography
Index
本书为《国外数学名著系列》丛书之一。该丛书是科学出版社组织学术界多位知名院士、专家精心筛选出来的一批基础理论类数学著作,读者对象面向数学系高年级本科生、研究生及从事数学专业理论研究的科研工作者。本册为《常微分方程和微分代数方程的计算机方法(影印版)41》,本书提供了一个统一的介绍初始值和边值问题在常微分方程和微分代数方程方法,旨在深入了解的问题和方法的实际计算,同时避免了广泛的定理证明。 Designedforthosepeoplewhowanttogainapracticalknowledgeofmodemtechniques,thisbookcontainsallthematerialnecessaryforacourseonthenmnericalsolutionofdifferentialequations.Writtenbytwoofthefieldsleadingathorities,itprovidesaunifiedpresentationofinitialvalueandboundaryvalueproblemsinODEsaswellasdifferential-algebraicequations.Theapproachisaimedatathoroughunderstandingoftheissuesandmethodsforpracticalcomputationwhileavoidinganextensivetheorem-prooftypeofexposition.Italsoaddressesreasonswhyexistingsoftwaresucceedsorfails. Thisbookisapracticalandmathematicallywellinformedintroductionthatemphasizesbasicmethodsandtheory,issuesintheuseanddevelopmentofmathematicalsoftware,andexamplesfromscientificengineeringapplications.Topicsrequiringanextensiveamountofmathematicaldevelopment,suchassymplecticmethodsforHamiltoniansystems,areintroduced,motivated,andincludedintheexercises,butacompleteandrigorousmathematicalpresentationisreferencedratherthanincluded. Thisbookisappropriateforseniorundergraduateorbeginninggraduatestudentswithacomputationalfocusandpracticingengineersandscientistswhowanttolearnaboutcomputationaldifferentialequations.Abeginningcourseinnumericalanalysisisneeded,andabeginningcourseinordinarydifferentialequationswouldbehelpful.
书籍详细信息 | |||
书名 | 常微分方程和微分代数方程的计算机方法站内查询相似图书 | ||
丛书名 | 国外数学名著系列 | ||
9787030234865 如需购买下载《常微分方程和微分代数方程的计算机方法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 科学出版社 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 72.0 | 语种 | 英文 |
尺寸 | 24 | 装帧 | 精装 |
页数 | 印数 |
常微分方程和微分代数方程的计算机方法是科学出版社于2008.出版的中图分类号为 O175 的主题关于 计算机应用-微分方程-英文 的书籍。