解析数论导论

解析数论导论

(美) 阿波斯托尔 (Apostol,T.M.) , 著

出版社:世界图书出版公司北京公司

年代:2011

定价:38.0

书籍简介:

本书是一部为本科生提供学习数论的基本思想和技巧的教程,重点强调解析数论。前五章讲述可约性、收敛和算术函数等基本概念。紧下来的章节讲述序列中素数的狄利克莱定理、高斯和、二次剩余、狄利克莱级数和欧拉积及其在黎曼zeta函数和狄利克莱函数中的应用,并且引进了划分的概念。

书籍目录:

historical introductionchapter 1 the fundamental theorem of arithmetic 1.1 introduction 1.2 divisibility 1.3 greatest common divisor 1.4 prime numbers 1.5 the fundamental theorem of arithmetic 1.6 the series of reciprocals of the primes 1.7 the euclidean algorithm 1.8 the greatest common divisor of more than two numbers exercises for chapter !chapter 2 arithmetical functions and dirichlet multiplication 2.1 introduction 2.2 the mebius function mn) 2.3 the euler totient function 0(n) 2.4 a relation connecting (0 and it 2.5 a product formula for (n) 2.6 the dirichlet product of arithmetical functions 2.7 dirichlet inverses and the mebius inversion formula 2.8 the mangoidt function a(n) 2.9 multiplicativefunctions 2.10 multiplicative functions and dirichlet multiplication 2.11 the inverse of a completely multiplicative function 2.12 liouville's function ).(.) 2.13 the divisor functions a,(n) 2.14 generalized convolutions 2.15 formal power series 2.16 the bell series of an arithmetical function 2.17 bell series and dirichlet multiplication 2.18 derivatives of arithmetical functions 2.19 the selberg identity exercises for chapter 2chapter 3 averages of arithmetical functions 3.1 introduction 3.2 the big oh notation. asymptotic equality of functions 3.3 euler's summation formula 3.4 some elementary asymptotic formulas 3.5 the average order old{n} 3.6 the average order of the divisor functions a,(n) 3.7 the average order of(n) 3.8 an application to the distribution of lattice points visiblefrom the origin 3.9 the average order of u(n) and of a(n) 3.10 the partial sums ora dirichlet product 3.11 applications to #(n) and a(n) 3.12 another identity for the partial sums of a dirichletproduct exercises for chapter 3chapter 4 some elementary theorems on the distribution ofprime numbers 4.1 introduction 4.2 chebyshev's functions (x) and ,9(x) 4.3 relations connecting (x) and ri(x) 4.4 some equivalent forms of the prime number theorem 4.5 inequalities for ri(n) and pn 4.6 shapiro's tauberian theorem 4.7 applications of shapiro's theorem 4.8 an asymptotic formula for the partial sums σpsx (i/p) 4.9 the partial sums of the m6bius function 4.10 brief sketch of an elementary proof of the prime numbertheorem 4.11 selberg's asymptotic formula exercises for chapter 4 lotchapter 5 congruences 5.1 definition and basic properties of congruences 5.2 residue classes and complete residue systems 5.3 linear congruences 5.4 reduced residue systems and the euler-fermat theorem il 5.5 polynomial congruences modulo p. lagrange's theorem 5.6 applications of lagrange's theorem 5.7 simultaneous linear congruences. the chinese remainder theoreml ! 5.8 applications of the chinese remainder theorem il 5.9 polynomial congruences with prime power moduli 5.10 the principle of cross-classification 5.11 a decomposition property of reduced residue systems exercises for chapter 5chapter 6 finite abelian groups and their characters 6.1 definitions 6.2 examples of groups and subgroups 6.3 elementary properties of groups 6.4 construction of subgroups 6.5 characters of finite abelian groups 6.6 the character group 6.7 the orthogonality relations for characters 6.8 dirichlet characters 6.9 sums involving dirichlet characters 6.10 the nonvanishing of l(i, x) for real nonprincipal x l#l exercises for chapter 6chapter 7 dirichlet's theorem on primes in arithmeticprogressions 7.1 introduction 7.2 dirichlet's theorem for primes of the form 4n - i and 4n i 7.3 the plan of the proof of dirichlet's theorem 7.4 proof of lemma 7.4 7.5 proof of lemma 7.5 7.6 proof of lemma 7.6 7.7 proof of lemma 7.8 7.8 proof of lemma 7.7 7.9 distribution of primes in arithmetic progressions exercises for chapter 7chapter 8 periodic arithmetical functions and gauss sums 8.1 functions periodic modulo k 8.2 existence of finite fourier series for periodic arithmeticalfunctions 8.3 ramanujan's sum and generalizations 8.4 multiplicative properties of the sums sk(n) 8.5 gauss sums associated with dirichlet characters 8.6 dirichlet characters with nonvanishing gauss sums 8.7 induced moduli and primitive characters 8.8 further properties of induced moduli 8.9 the conductor of a character 8.10 primitive characters and separable gauss sums 8.11 the finite fourier series of the dirichlet characters 8.12 p61ya's inequality for the partial sums of primitivecharacters exercises for chapter 8chapter 9 quadratic residues and the quadratic reciprocitylaw 9.1 quadratic residues 9.2 legendre's symbol and its properties 9.3 evaluation of(- lip) and (2]p) 9.4 gauss' lemma 9.5 the quadratic reciprocity law 9.6 applications of the reciprocity law 9.7 the jacobi symbol 9.8 applications to diophantine equations 9.9 gauss sums and the quadratic reciprocity law 9.10 the reciprocity law for quadratic gauss sums 9.11 another proof of the quadratic reciprocity law exercisesfor chapter 9chapter 10 primitive roots 10.1 the exponent ora number mod m. primitive roots 10.2 primitive roots and reduced residue systems 10.3 the nonexistence of primitive roots mod 2' for a ] 3 10.4 the existence of primitive roots mod p for odd primes p 10.5 primitive roots and quadratic residues 10.6 the existence of primitive roots mod p 10.7 the existence of primitive roots mod 2p 10.8 the nonexistence of primitive roots in the remainingcases 10.9 the number of primitive roots mod m 10.10 the index calculus 10.11 primitive roots and dirichlet characters 10.12 real-valued dirichlet characters mod p 10.13 primitive dirichlet characters mod p exercises for chapter 10chapter 11 dirichlet series and euler products 11.1 introduction 11.2 the half-plane of absolute convergence of a dirichletseries 11.3 the function defined by a dirichlet series 11.4 multiplication of dirichlet series 11.5 euler products 11.6 the half-plane of convergence of a dirichlet series 11.7 analytic properties of dirichlet series 11.8 dirichlet series with nonnegative coefficients 11.9 dirichlet series expressed as exponentials of dirichletseries 11.10 mean value formulas for dirichlet series 11.11 an integral formula for the coefficients of a dirichletseries 11.12 an integral formula for the partial sums ora dirichletseries exercises for chapter iichapter 12 the functions ζ(s) and l(s, x) 12.1 introduction 12.2 properties of the gamma function 12.3 lntegrai representation for the hurwitz zeta function 12.4 a contour integral representation for the hurwitz zetafunction 12.5 the analytic continuation of the hurwitz zeta function 12.6 analytic continuation of ζ(s) and l(s, x) 12.7 hurwitz's formula for ζ(s, a) 12.8 the functional equation for the riemann zeta function 12.9 a functional equation for the hurwitz zeta function 12.10 the functional equation for l-functions 12.11 evaluation of ζ(-n, a) 12.12 properties of bernoulli numbers and bernoullipolynomials 12.13 formulas for l(0, z) 12.14 approximation of ζ(s, a) by finite sums 12.15 inequalities for iζ(s, a)l 12.16 inequalities for iζ(s)l and il(s, x)l exercises for chapter 12chapter 13 analytic proof of the prime number theorem 13.1 theplan of the proof 13.2 lemmas 13.3 a contour integral representation for ψ(x)/x2 13.4 upper bounds for ┃ζ(s)┃and iζ'(s)[ near the line a =1 13.5 the nonvanishing of ζ(s) on the line a =1 13.6 inequalities for ┃1//ζ(s) and ┃ζ'(s)ζ(s)┃ 13.7 completion of the proof of the prime number theorem 13.8 zero-free regions for ζ(s) 13.9 the riemann hypothesis 13.10 application to the divisor functi6n 13.11 application to euler's totient 13.12 extension of pe1ya's inequality for character sums exercises for chapter 13chapter 14 partitions 14.1 introduction 14.2 geometric representation of partitions 14.3 generating functions for partitions 14.4 euler's pentagonal-number theorem 14.5 combinatorial proof of euler's pentagonal-numbertheorem 14.6 euler's recursion formula for p(n) 14.7 an upper bound for p(n) 14.8 jacobi's triple product identity 14.9 consequences of jacobi's identity 14.10 logarithmic differentiation of generating functions 14.11 the partition identities of ramanujan exercises for chapter 14bibliographyindex of special symbolsindex

内容摘要:

《解析数论导论(英文版)》是一部为本科生提供学习数论的基本思想和技巧的教程,重点强调解析数论。前五章讲述可约性、收敛和算术函数等基本概念。紧下来的章节讲述序列中素数的狄利克莱定理、高斯和、二次剩余、狄利克莱级数和欧拉积及其在黎曼zeta函数和狄利克莱函数中的应用,并且引进了划分的概念。书中每章末都收集了大量练习。前十章,除去第一章,任何具备基本微积分知识的人都可以读懂;最后四章需要对复函数理论(包括复积分和留数积分)一定的了解。

书籍规格:

书籍详细信息
书名解析数论导论站内查询相似图书
9787510040627
如需购买下载《解析数论导论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位世界图书出版公司北京公司
版次影印本印次1
定价(元)38.0语种英文
尺寸21 × 17装帧平装
页数 360 印数

书籍信息归属:

解析数论导论是世界图书出版公司北京公司于2011.12出版的中图分类号为 O156 的主题关于 数论-英文 的书籍。