偏微分方程

偏微分方程

保继光, 朱汝金, 编著

出版社:北京师范大学出版社

年代:2011

定价:26.0

书籍简介:

本套书所列书目是数学专业及应用数学专业的本科生部分基础课和专业课教材(其他部分有待今后继续补充完善)。北师大数学系在长期的教学改革实践中不断地总结经验,同时借鉴了我国一些著名数学家的重要思想,初步形成了如下的基本看法,即用现代数学的思想、观点和方法(包括适当运用现代数学的语言)对现行基础课的教学内容与体系进行改革,在保持基础课内容的基本系统性和完整性的基础上为学生打开一个通向现代数学的窗口。基于这一基本看法,北师大数学系为数学及应用数学专业编著了系列教材。本套书可作为高等院校数学系的本科生、研究生的教材,也可作为一般综合性大学的数学专业的教材,同时可作为中学数学教师继续教育的培训用书和数学教育工作者的参考资料。

作者介绍:

北京师范大学数学科学学院,成立于1922年,其前身为1915年创建的北京高等师范学校数理部,1983年成立数学与数学教育研究所,2004年成立数学科学学院。学院现有教师79人,其中教授35人,副教授27人;有博士学位的教师占90%。特别地,有中国科学院院士2人,第三世界科学院院士1人,国家千人计划入选者2人,高等学校教学名师奖1人,教育部长江学者奖励计划特聘教授6人和讲座教授1人,国家杰出青年科学基金获得者4人,入选新世纪百千万人才工程国家级人选2人,北京市高等学校教学名师奖3人,教育部跨世纪人才培养计划(教育部高校青年教师奖,教育部新世纪优秀人才支持计划)11人,德国洪堡(Humboldt)基金获得者9人。   学院1981年获基础数学、概率论与数理统计博士学位授予权,1986年获应用数学博士学位授予权。1988年基础数学、概率论与数理统计被评为国家级重点学科。1990年建立了我校第1个博士后流动站。1996年数学学科成为国家“211工程”重点建设的学科。1997年成为国家基础科学人才培养基金基地。1998年获数学一级学科博士学位授予权。2001年概率论方向被评为我国数学界第1个国家自然科学基金刨新群体,并获得3期9年资助。2005年进入“985工程”科技创新基础建设平台。2007年数学被评为一级学科国家重点学科。2008年数学与应用数学专业师范教育方向获第一批高等学校特色专业建设点。2009年国家教育部数学与复杂系统重点实验室挂牌,分析类课程教学团队被评为国家级优秀教学团队,调和分析与流形的几何方向被评为国家教育部创新团队。2011年获计算数学博士学位授予权。学院还有基础数学、计算数学、概率论与数理统计、应用数学、课程与教学论(数学)、科学技术史(数学)、计算机软件与理论、控制理论与控制工程8个硕士点。学院下设数学系、统计与金融数学系,有数学与应用数学、统计学2个本科专业和《数学通报》   北京师范大学数学系成立于1922年,其前身为1915年创建的北京高等师范学校数理部,1983年成立数学与数学教育研究所,2004年成立数学科学学院。学院现有教师79人,其中教授35人,副教授27人;有博士学位的教师占90%。特别地,有中国科学院院士2人,第三世界科学院院士1人,国家千人计划入选者2人,高等学校教学名师奖1人,教育部长江学者奖励计划特聘教授6人和讲座教授1人,国家杰出青年科学基金获得者4人,入选新世纪百千万人才工程国家级人选2人,北京市高等学校教学名师奖3人,教育部跨世纪人才培养计划(教育部高校青年教师奖,教育部新世纪优秀人才支持计划)11人,德国洪堡(Humboldt)基金获得者9人,   学院1981年获基础数学、概率论与数理统计博士学位授予权,1986年获应用数学博士学位授予权。1988年基础数学、概率论与数理统计被评为国家级重点学科。1990年建立了我校第1个博士后流动站。1996年数学学科成为国家“211工程”重点建设的学科。1997年成为国家基础科学人才培养基金基地。1998年获数学一级学科博士学位授予权。2001年概率论方向被评为我国数学界第1个国家自然科学基金刨新群体,并获得3期9年资助。2005年进入“985工程”科技创新基础建设平台。2007年数学被评为一级学科国家重点学科。2008年数学与应用数学专业师范教育方向获第一批高等学校特色专业建设点。2009年国家教育部数学与复杂系统重点实验室挂牌,分析类课程教学团队被评为国家级优秀教学团队,调和分析与流形的几何方向被评为国家教育部创新团队。2011年获计算数学博士学位授予权。学院还有基础数学、计算数学、概率论与数理统计、应用数学、课程与教学论(数学)、科学技术史(数学)、计算机软件与理论、控制理论与控制工程8个硕士点。学院下设数学系、统计与金融数学系,有数学与应用数学、统计学2个本科专业和《数学通报》杂志编辑部。

书籍目录:

第1章 引言

1.1 偏微分方程的定义与典型实例

1.2 偏微分方程的发展历史

1.3 偏微分方程的研究方法

1.4 偏微分方程的基本概念

1.5 各章节内容简介

习题1

第2章 方程的导出、分类与化简

2.1 波动方程的导出及其定解问题

2.1.1 弦振动方程及其定解问题

2.1.2 膜振动方程及其定解问题

2.2 热传导方程的导出及其定解问题

2.3 位势方程及其定解问题

2.4 定解问题的适定性

2.5 二元二阶线性偏微分方程的分类与化简

2.6 多元二阶线性偏微分方程的分类与化简

习题2

第3章 双曲型方程

3.1 解一维波动方程的达朗贝尔法

3.1.1 无界弦的自由振动方程

3.1.2 半无界弦的自由振动方程

3.1.3 弦强迫振动方程

3.2 解高维波动方程的球面平均法

3.2.1 高维波动方程的哥西问题

3.2.2 依赖区域、决定区域和影响区域

3.3 解波动方程混合问题的分离变量法

3.3.1 具狄利克雷边界条件的弦自由振动方程的混合问题

3.3.2 具诺伊曼边界条件的弦自由振动方程的混合问题

3.3.3 非齐次问题的解法

3.3.4 高维波动方程的混合问题

3.4 波动方程解的唯一性和稳定性

3.4.1 能量积分与混合问题解的唯一性和稳定性

3.4.2 哥西问题解的唯一性和稳定性

3.5 例题与方法选讲

3.5.1 具罗宾边界条件的弦自由振动方程的混合问题

3.5.2 圆域上弦自由振动方程混合问题与贝塞尔函数

3.5.3 特征线法

3.5.4 广义哥西问题

习题3

第4章 抛物型方程

4.1 傅里叶积分变换

4.1.1 傅里叶积分公式与傅里叶积分变换

4.1.2 傅里叶积分变换的性质

4.1.3 举例

……

第5章 椭圆型方程

第6章 一阶偏微分方程与哥西——柯瓦列夫斯卡娅定理

第7章 变分原理与偏微分方程的广义解

参考文献

索引

内容摘要:

《新世纪高等学校教材·数学与应用数学基础课系列教材:偏微分方程》介绍偏微分方程中典型方程的物理背景、主要解法及有关适定性的基本结论。初步介绍能量积分、积分变换、先验估计、变分法与广义解等重要概念。《新世纪高等学校教材·数学与应用数学基础课系列教材:偏微分方程》的论证及计算完整,难易层次分明,力求简明易读。《新世纪高等学校教材·数学与应用数学基础课系列教材:偏微分方程》可用于普通高等学校教材,也可用作自学读本。读者具有数学分析、常微分方程知识就可学习本书。略去选讲的材料,57课时可以基本讲完全书。

书籍规格:

书籍详细信息
书名偏微分方程站内查询相似图书
9787303133611
如需购买下载《偏微分方程》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位北京师范大学出版社
版次1版印次1
定价(元)26.0语种简体中文
尺寸23 × 17装帧平装
页数印数

书籍信息归属:

偏微分方程是北京师范大学出版社于2011.9出版的中图分类号为 O175.2 的主题关于 偏微分方程-高等学校-教材 的书籍。