出版社:哈尔滨工业大学出版社
年代:2014
定价:100.0
本书是MOMENTUM PRESS Aerospace Sensors的影印版。在三维空间运行的航天飞机需要复杂的运动和动力学控制,以及通信、导航、自动化的要求。所以传感器是至关重要部分。本书包括航空航天飞行器和支持系统传感器的所有主要类别及最新进展,以及它们如何可以与另一个系统的控制集成。内容包括:空气压力相关的传感器、雷达高度计、无线传感器、设备和传感器的线性加速度测量、陀螺器件及传感器、推进传感器等。
SERIES PREFACE
PREFACE
ACKNOWLEDGMENTS
ABOUT THE SERIES EDITOR
ABOUT THE EDITOR
1 INTRODUCTION
1.1 General Considerations
1.1.1 Types of Aerospace Vehicles and Missions
1.1.2 The Role of Sensors and Control Systems in Aerospace
1.1.3 Specific Design Criteria for Aerospace Vehicles and their Sensors
1.1.4 Physical Principles Influencing Primary Aerospace Sensor Design
1.1.5 Reference Frames Accepted in Aviation and Astronautics
1.2 Characteristics and Challenges of the Atmospheric Environment
1.2.1 Components of the Earth's Atmosphere
1.2.2 Stationary Models of the Atmosphere
1.2.3 Anisotropy and Variability in the Atmosphere
1.2.4 Electrical Charges in the Atmosphere
1.2.5 Electromagnetic Wave Propagation in the Atmosphere
1.2.6 Geomagnetism
1.2.7 The Planetary Atmosphere
1.3 Characteristics and Challenges of the Space Environment
1.3.1 General Considerations
1.3.2 Near—Earth Space
1.3.3 Circumsolar (Near—Sun) Space
1.3.4 Matter in Space
1.3.5 Distances and Time Scales in Deep Space
References
2 AIR PRESSURE—DEPENDENT SENSORS
2.1 Basic Aircraft Instrumentation
2.2 Fundamental Physical Properties of Airflow
2.2.1 Fundamental Airflow Physical Property Definitions
2.2.1.1 Pressure
2.2.1.2 Air Density
2.2.1.3 Temperature
2.2.1.4 Flow Velocity
2.2.2 The Equation of State for a Perfect Gas
2.2.3 Extension o fDefinitions: Total, Dynamic, Static, and Stagnation
2.2.4 The Speed of Sound and Mach Number
2.2.4.1 The Speed of Sound
2.2.4.2 Mach Number and Compressibility
2.2.5 The Source of Aerodynamic Forces
2.3 Altitude Conventions
2.4 Barometric Altimeters
2.4.1 Theoretical Considerations
2.4.1.1 The Troposphere
2.4.1.2 The Stratosphere
2.4.2 Barometric Altimeter Principles and Construction
2.4.3 Barometric Altimeter Errors
2.4.3.1 Methodical Errors
2.4.3.2 Instrumental Errors
2.5 Airspeed Conventions
2.6 The Manometric Airspeedlndicator
2.6.1 Manometric Airspeedlndicator Principles and Construction
2.6.2 Theoretical Considerations
2.6.2.1 Subsonic Incompressible Operation
2.6.2.2 Subsonic Compressible Operation
2.6.2.3 Supersonic Operation
2.6.3 Manometric Airspeed Indicator Errors
2.6.3.1 Methodical Errors
2.6.3.2 Instrumental Errors
2.7 The Vertical Speed Indicator (VSI)
2.7.1 VSI Principles and Construction
2.7.2 Theoretical Considerations
2.7.2.1 Lag Rate (Time Constant)
2.7.2.2 Sensitivity to Mach Number
2.7.2.3 Sensitivity to Altitude
2.7.3 VSI Errors
2.8 Angles of Attack and Slip
2.8.1 The Pivoted Vane
2.8.2 The Differential Pressure Tube
2.8.3 The Null—Seeking Pressure Tube
References
Appendix
3 RADAR ALTIMETERS
3.1 Introduction
3.1.1 Definitions
3.1.2 Altimetry Methods
3.1.3 General Principles of Radar Altimetry
3.1.4 Classification by Different Features
3.1.5 Application and Performance Characteristics
3.1.5.1 Aircraft Applications
3.1.5.2 Spacecraft Applications
3.1.5.3 Military Applications
3.1.5.4 Remote Sensing Applications
3.1.6 Performance Characteristics
3.2 Pulse Radar Altimeters
3.2.1 Principle of Operation
3.2.2 Pulse Duration
3.2.3 Tracking Altimeters
3.2.4 Design Principles
3.2.5 Features of Altimeters with Pulse Compression
3.2.6 Pulse Laser Altimetry
3.2.7 Some Examples
3.2.8 Validation
3.2.9 Future Trends
3.3 Continuous Wave Radar Altimeters
3.3.1 Principles of Continuous Wave Radar
3.3.2 FMCW Radar Waveforms
3.3.3 Design Principles and Structural Features
3.3.3.1 Local Oscillator Automatic Tuning
3.3.3.2 Single—Sideband Receiver Structure
3.3.4 The Doppler Effect
3.3.5 Alternative Measuring Devices for FMCW Altimeters
3.3.6 Accuracy and Unambiguous Altitude
3.3.7 Aviation Applications
3.4 Phase Precise Radar Altimeters
3.4.1 The Phase Method of Range Measurement
3.4.2 The Two—Frequency Phase Method
3.4.3 Ambiguity and Accuracy in the Two—Frequency Method
3.4.4 Phase Ambiguity Resolution
3.4.5 Waveforms
3.4.6 Measuring Devices and Signal Processing
3.4.7 Remarks on the Accuracy of CW and Pulse Radar Altimeters
3.5 Radioactive Altimeters for Space Application
3.5.1 Motivation and History
3.5.2 Physical Bases
3.5.2.1 Features of Radiation
3.5.2.2 Generators of Photon Emission
3.5.2.3 Receivers
3.5.2.4 Propagation Features
3.5.3 Principles of Operation
3.5.4 Radiation Dosage
3,5.5 Examples of Radioisotope Altimeters
References
4 AUTONOMOUS RADIO SENSORS FOR MOTION PARAMETERS
4.1 Introduction
4.2 Doppler Sensors for Ground Speed and Crab Angle
4.2.1 Physical Basis and Functions
4.2.2 Principle of Operation
4.2.3 Classification and Features of Sensors for Ground Speed and Crab Angle
4.2.4 Generalized Structural Diagram for the Ground Speed'and Crab Angle Meter
4.2.5 Design Principles
4.2.6 Sources of Doppler Radar Errors
4.2.7 Examples
4.3 Airborne Weather Sensors
4.3.1 Weather Radar as Mandatory Equipment of Airliners and Transport Aircraft
4.3.2 Multifunctionality of Airborne Weather Radar
4.3.3 Meteorological Functions of AWR
4.3.4 Principles ofDWP Detection with AWR
4.3.4.1 Developing Methods of DWP Detection
4.3.4.2 Cumulonimbus Clouds and Heavy Rain
4.3.4.3 Turbulence Detection
4.3.4.4 Wind Shear Detection
4.3.4.5 Hail Zone Detection
4.3.4.6 Probable Icing—in—flight Zone Detection
4.3.5 Surface Mapping
4.3.5.1 Comparison of Radar and Visual Orientation
4.3.5.2 The Surface—Mapping Principle
4.3.5.3 Reflecting Behavior ofthe Earth's Surface
4.3.5.4 The Radar Equation and Signal Correction
4.3.5.5 Automatic Classification of Navigational Landmarks
4.3.6 AWR Design Principles
4.3.6.1 The Operating Principle and Typical Structure of AWR
4.3.6.2 AWR Structures
4.3.6.3 Performance Characteristics: Basic Requirements
4.3.7 AWR Examples
4.3.8 Lightning Sensor Systems: Stormscopes
4.3.9 Optical Radar
4.3.9.1 Doppler Lidar
4.3.9.2 Infrared Locators and Radiometers
4.3.10 The Integrated Localization of Dangerous Phenomena
4.4 Collision Avoidance Sensors
4.4.1 Traffic Alert and Collision Avoidance Systems (TCAS)
4.4.1.1 The Purpose
4.4.1.2 A Short History
4.4.1.3 TCAS Levels of Capability
4.4.1.4 TCAS Concepts and Principles of Operation
4.4.1.5 Basic Components
4.4.1.6 Operation
4.4.1.7 TCAS Logistics
4.4.1.8 Cockpit Presentation
4.4.1.9 Examples of System Implementation
4.4.2 The Ground Proximity Warning System (GPWS)
4.4.2.1 Purpose and Necessity
4.4.2.2 GPWS History, Principles, and Evolution
4.4.2.3 GPWS Modes
4.4.2.4 Shortcomings of Classical GPWS
4.4.2.5 Enhanced GPWSs
4.4.2.6 Look—Ahead Warnings
4.4.2.7 Implementation Examples
References
……
5 DEVICES AND SENSORS FOR LINEAR ACCELERATION MEASUREMENT
6 GYROSCOPIC DEVICES AND SENSORS
7 COMPASSES
8 PROPULSION SENSORS
9 PRINCIPLES AND EXAMPLES OF SENSORINTEGRATION
EPILOGUE
INDEX
《航天传感器(影印版)》根据作者40多年来从事航空—航天飞行器结构试验和应变测量技术的体会,收集了国内外相关资料,以词目的形式汇编成册,以供从事航空—航天飞行器结构试验和应变测量技术,以及相应的工程结构试验和应变测量的各类技术人员参考。
书籍详细信息 | |||
书名 | 航天传感器站内查询相似图书 | ||
9787560350578 如需购买下载《航天传感器》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 哈尔滨 | 出版单位 | 哈尔滨工业大学出版社 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 100.0 | 语种 | 英文 |
尺寸 | 23 × 19 | 装帧 | 平装 |
页数 | 印数 |
航天传感器是哈尔滨工业大学出版社于2014.12出版的中图分类号为 V443 的主题关于 航天器-传感器-英文 的书籍。