出版社:科学出版社
年代:2013
定价:98.0
本书系统地论述了有限元方法的数学基础理论。以椭圆偏微分方程边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
Preface to the Series in Information and Computational Science
Preface
Chapter 1Variational Principle
1.1 Sobolev Space
1.2 Poisson Equation
1.2.1 Dirichlet Problem
1.2.2 Neumann Problem
1.3 Biharmonic Equation
1.4 Abstract Variational Problem
1.5 Galerkin Method and Ritz Method
Chapter 2 Finite Element and Finite Element Space
2.1 Triangulation
2.2 Finite Element
2.3 Finite Element Space
2.4 Second Order Problem: Simplex Elements
2.4.1 Simplex Element of Degreek
2.4.2 Linear Simplex Element
2.4.3 Quadric Simplex Element
2.4.4 Cubic Simplex Element
2.4.5 Incomplete Cubic Simplex Element
2.4.6 Crouzeix-Raviart Element
2.4.7 Cubic Hermite Simplex Element
2.4.8 Zienkiewicz Element
2.5 Second Order Problem: Rectangle Elements
2.5.1 Rectangle Element of Type(k)
2.5.2 Incomplete Rectangle Element of Type(2)
2.5.3 Wilson Element
2.5.4 Rectangle C-R Element
2.6 Fourth Order Problem: Simplex Elements
2.6.1 Morley Element
2.6.2 Zienkiewicz Element
2.6.3 Morley-Zienkiewicz Element
2.6.4 Modified Zienkiewicz Element
2.6.5 12-parameter Triangle Plate Element
2.6.6 15-parameter Triangle Plate Element
2.6.7 Argyris Element
2.6.8 Bell Element
2.6.9 Cubic Tetrahedron Element
2.7 Fourth Order Problem: Rectangle Elements
2.7.1 Rectangle Morley Element
2.7.2 Adini Element
2.7.3 Bogner-Fox-Schmit Element
2.8 2m-th Order Problem: MWX Element
Chapter 3 Interpolation Theory of Finite Elements
3.1 Affine Mapping and Affine Family
3.2 Affine Continuity and Scale Invariance
3.3 Interpolation Error
3.4 Inverse Inequality
3.5 Approximate Error of Finite Element Spaces
3.6 Interpolation Error of General Element
Chapter 4 Conforming Finite Element Method
4.1 Poisson Equation
4.2 Plate Bending Problem
4.3 A Posteriori Error Estimate
Chapter 5 Nonconforming Finite Element Methods
5.1 Nonconforming Finite Element
5.2 Weak Continuity
5.3 Second Order Elliptic Problem
5.4 Fourth Order Elliptic Problem
5.5 2m-th Order Elliptic Problem
5.6 A Posteriori Error Estimate
5.7 Error Estimate in L2 Norm
Chapter 6 Convergence of Nonconforming Finite Element
6.1 Generalized Path Test
6.2 Patch Test
6.2.1 Patch Test
6.2.2 Weak Patch Test
6.2.3 Sufficiency of Patch Test
6.2.4 Necessity of Patch Test
6.3 Counter Examples of Patch Test
6.4 F-E-M Test
……
Chapter 7 Quasi-Conforming Element Method
Chapter 8 Unconventional Finite Element Method
Chapter 9 Double Set Parameter Method
Chapter 10 Property of Finite Element Space
Chapter 11 L∞ Error Estimate for Second Order Problem
Chapter 12 L∞ Error Estimate for Plate Bending Problem
Bibliography
Index
《有限元方法(英文版)》系统地论述了有限元方法的数学基础理论。以椭圆偏微分方程边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
书籍详细信息 | |||
书名 | 有限元方法站内查询相似图书 | ||
丛书名 | 信息与计算机科学丛书 | ||
9787030376213 如需购买下载《有限元方法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 科学出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 98.0 | 语种 | 英文 |
尺寸 | 24 × 17 | 装帧 | 平装 |
页数 | 300 | 印数 |