统计学习基础

统计学习基础

(德) 黑斯蒂 (Hastie,T.) , 著

出版社:世界图书出版公司北京公司

年代:2014

定价:119.0

书籍简介:

本书是Springer统计系列丛书之一,旨在让读者深入了解数据挖掘和预测。随着计算机和信息技术迅猛发展,医学、生物学、金融、以及市场等各个领域的大量数据的产生,处理这些数据以及挖掘它们之间的关系对于一个统计工作者显得尤为重要。本书运用共同的理论框架将这些领域的重要观点做了很好的阐释,重点强调方法和概念基础而非理论性质,运用统计的方法更是突出概念而非数学。另外,书中大量的彩色图例可以帮助读者更好地理解概念和理论。目次:导论;监督学习概述;线性回归模型;线性分类方法;基展开与正则性。

书籍目录:

Preface to the Second Edition

Preface to the First Edition

1 Introduction

2 Overview of Supervised Learning

2.1 Introduction

2.2 Variable Types and Terminology

2.3 Two Simple Approaches to Prediction

Least Squares and Nearest Neighbors

2.3.1 Linear Models and Least Squares

2.3.2 Nearest-Neighbor Methods

2.3.3 From Least Squares to Nearest Neighbors

2.4 Statistical Decision Theory

2.5 Local Methods in High Dimensions

2.6 Statistical Models, Supervised Learning and Function Approximation

2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y)

2.6.2 Supervised Learning

2.6.3 Function Approximation

2.7 Structured Regression Models

2.7.1 Difficulty of the Problem

2.8 Classes of Restricted Estimators

2.8.1 Roughness Penalty and Bayesian Methods

2.8.2 Kernel Methods and Local Regression

2.8.3 Basis Functions and Dictionary Methods

2.9 Model Selection and the Bias-Variance rlyadeoff

Bibliographic Notes

Exercises

3 Linear Methods for Regression

3.1 Introduction

3.2 Linear Regression Models and Least Squares

3.2.1 Example: Prostate Cancer

3.2.2 The Gauss-Markov Theorem

3.2.3 Multiple Regression from Simple Univariate Regression

3.2.4 Multiple Outputs

3.3 Subset Selection

3.3.1 Best-Subset Selection

3.3.2 Forward- and Backward-Stepwise Selection

3.3.3 Forward-Stagewise Regression

3.3.4 Prostate Cancer Data Example (Continued)

3.4 Shrinkage Methods

3.4.1 Ridge Regression

3.4.2 The Lasso

3.4.3 Discussion: Subset Selection, Ridge Regression and the Lasso

3.4.4 Least Angle Regression

3.5 Methods Using Derived Input Directions

3.5.1 Principal Components Regression

3.5.2 Partial Least Squares

3.6 Discussion: A Comparison of the Selection and Shrinkage Methods

3.7 Multiple Outcome Shrinkage and Selection

3.8 More on the Lasso and Related Path Algorithms

3.8.1 Incremental Forward Stagewise Regression

3.8.2 Piecewise-Linear Path Algorithms

3.8.3 The Dantzig Selector

3.8.4 The Grouped Lasso

3.8.5 Further Properties of the Lasso

3.8.6 Pathwise Coordinate Optimization

3.9 Computational Considerations

Bibliographic Notes

Exercises

……

4 Linear Methods for Classification

5 Basis Expansions and Regularization

6 Kernel Smoothing Methods

7 Model Assessment and Selection

8 Modellnference and Averaging

9 Additive Models, Trees, and Related Methods

10 Boosting and Additive Trees

11 Neural Networks

12 Support Vector Machines and Flexible Discriminants

13 Prototype Methods and Nearest-Neighbors

14 Unsupervised Learning

15 Random Forests

16 Ensemble Learning

17 Undirected Graphical Models

18 High-Dimensional Problems: p≥N

References

Author Index

Index

内容摘要:

This book is our attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, we emphasize the methods and their conceptual underpinnings rather than their theoretical properties. As a result, we hope that this book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

书籍规格:

书籍详细信息
书名统计学习基础站内查询相似图书
9787510084508
如需购买下载《统计学习基础》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位世界图书出版公司北京公司
版次影印本印次1
定价(元)119.0语种英文
尺寸23 × 15装帧平装
页数印数

书籍信息归属:

统计学习基础是世界图书出版公司北京公司于2014.8出版的中图分类号为 C8 的主题关于 统计学-英文 的书籍。