出版社:世界图书出版公司北京公司
年代:2013
定价:12.5
可压缩流的LES是一个函待开发的领域,本书旨在讲述LES基础及其在实践中的应用。为了最大程度地缩小理论框架之间的衔接,缓解LES研究和日益增长的工程模型应用中的需求之间的矛盾,本书最大程度地将和该领域有关论题囊括其中,用全新的方式全面讲述了LES理论及其应用。目次:导论;LES控制方程;可压缩湍流动力学;泛函模型;简明结构模型;SGS模型和数值离散化之间的关系;可压缩流的大涡模拟边界条件;可压缩性效应的亚声速应用;超声波应用;激波-湍流相互作用的超声波应用。读者对象:力学、物理专业的研究生、科研人员。
1 introduction2 les governing equations2.1 preliminary discussion2.2 governing equations2.2.1 fundamental assumptions2.2.2 conservative formulation2.2.3 alternative formulations2.3 filtering operator2.3.1 definition2.3.2 discrete representation of filters2.3.3 filtering of discontinuities2.3.4 filter associated to the numerical method2.3.5 commutation error2.3.6 favre filtering2.3.7 summary of the different type of filters2.4 formulation of the filtered governing equations.2.4.1 enthalpy formulation2.4.2 temperature formulation2.4.3 pressure formulation2.4.4 entropy formulation2.4.5 filtered total energy equations2.4.6 momentum equations2.4.7 simplifying assumptions2.5 additional relations for les of compressible flows2.5.1 preservation of original symmetries2.5.2 discontinuity jump relations for les2.5.3 second law of thermodynamics2.6 model construction2.6.1 basic hypothesis2.6.2 modeling strategies3 compressible turbulence dynamics3.1 scope and content of this chapter3.2 kovasznay decomposition of turbulent fluctuations3.2.1 kovasznay's linear decomposition3.2.2 weakly nonlinear kovasznay decomposition3.3 statistical description of compressible turbulence3.4 shock-turbulence interaction3.4.1 introduction to the linear interaction approximation theory3.4.2 vortical turbulence-shock interaction3.4.3 mixed-mode turbulence-shock interaction3.4.4 consequences for subgrid modeling3.5 different regimes of isotropic compressible turbulence3.5.1 quasi-isentropic-turbulence regime3.5.2 nonlinear subsonic regime3.5.3 supersonic regime3.5.4 consequences for subgrid modeling4 functional modeling4.1 basis of functional modeling4.1.1 phenomenology of scale interactions4.1.2 basic functional modeling hypothesis4.2 sgs viscosity4.2.1 the boussinesq hypothesis4.2.2 smagorinsky model4.2.3 structure function model4.2.4 mixed scale model4.3 isotropic tensor modeling4.4 sgs heat flux4.5 modeling of the subgrid turbulent dissipation rate4.6 improvement of sgs models4.6.1 structural sensors and selective models4.6.2 accentuation technique and filtered models4.6.3 high-pass filtered eddy viscosity4.6.4 wall-adapting local eddy-viscosity model4.6.5 dynamic procedure4.6.6 implicit diffusion and the implicit les concept5 explicit structural modeling5.1 motivation of structural modeling5.2 models based on deconvolution5.2.1 scale-similarity model5.2.2 approximate deconvolution model5.2.3 tensor-diffusivity model5.3 regularization techniques;.5.3.1 eddy-viscosity regularization5.3.2 relaxation regularization5.3.3 regularization by explicit filtering5.4 multi-scale modeling of subgrid-scales5.4.1 multi-level approaches5.4.2 stretched-vortex model5.4.3 variational multi-scale model6 relation between sgs model and numerical discretization6.1 systematic procedures for nonlinear error analysis6.1.1 error sources6.1.2 modified differential equation analysis6.1.3 modified differential equation analysis in spectral space6.2 implicit les approaches based on linear and nonlinear discretization schemes6.2.1 the volume balance procedure of schumamm6.2.2 the kawamura-kuwahara scheme6.2.3 the piecewise-parabolic method6.2.4 the flux-corrected-transport method6.2.5 the mpdata method6.2.6 the optimum finite-volume scheme6.3 implicit les by adaptive local deconvolution6.3.1 fundamental concept of aldm6.3.2 aldm for the incompressible navier-stokes equations.6.3.3 aldm for the compressible navier-stokes equations7 boundary conditions for large-eddy simulation of compressible flows7.1 introduction7.2 wall modeling for compressible les7.2.1 statement of the problem7.2.2 wall boundary conditions in the kovasznay decomposition framework: an insight7.2.3 turbulent boundary layer: vorticity and temperature fields7.2.4 turbulent boundary layer: acoustic field7.2.5 consequences for the development of compressible wall models7.2.6 extension of existing wall models for incompressible flows7.3 unsteady turbulent inflow conditions for compressible les7.3.1 fundamentals7.3.2 precursor simulation: advantages and drawbacks7.3.3 extraction-rescaling techniques7.3.4 synthetic-turbulence-based models8 subsonic applications with compressibility effects8.1 homogeneous turbulence8.1.1 context8.1.2 a few realizations8.1.3 influence of the numerical method8.1.4 sgs modeling8.2 channel flow8.2.1 context8.2.2 a few realizations8.2.3 influence of the numerical method8.2.4 influence of the sgs model8.3 mixing layer8.3.1 context8.3.2 a few realizations8.3.3 influence of the numerical method8.3.4 influence of the sgs model8.4 boundary-layer flow8.4.1 context8.4.2 a few realizations8.5 jets8.5.1 context8.5.2 a few realizations8.5.3 influence of the numerical method8.5.4 influence of the sgs model8.5.5 physical analysis8.6 flows over cavities8.6:1 context8.6.2 a few realizations8.6.3 influence of the numerical method8.6.4 influence of the sgs model8.6.5 physical analysis9 supersonic applications9.1 homogeneous turbulence9.2 channel flow9.2.1 context9.2.2 a few realizations9.2.3 influence of the numerical method9.2.4 influence of the grid resolution9.2.5 influence of the sgs model9.3 boundary layers9.3.1 context9.3.2 a few realizations9.3.3 influence of the numerical method9.3.4 influence of the grid resolution9.3.5 sgs modeling9.4 jets9.4.1 context9.4.2 a few realizations9.4.3 influence of the numerical method9.4.4 influence of the sgs model9.4.5 physical analysis10 supersonic applications with shock-turbulence interaction10.1 shock-interaction with homogeneous turbulence10.1.1 phenomenology of shock-interaction with homogeneous turbulence10.1.2 les of shock-interaction with homogeneous turbulence10.2 shock-turbulence interaction in jets10.2.1 phenomenology of shock-turbulence interaction in jets10.2.2 les of shock-turbulence interaction in jets10.3 shock-turbulent-boundary-layer interaction10.3.1 phenomenology of shock-turbulent-boundary-layer interaction10.3.2 les of compression-ramp configurationsreferencesindex
可压缩流的les是一个函待开发的领域,《可压缩流的大涡模拟方法》旨在讲述les基础及其在实践中的应用。为了最大程度地缩小理论框架之间的衔接,缓解les研究和日益增长的工程模型应用中的需求之间的矛盾,《可压缩流的大涡模拟方法》最大程度地将和该领域有关论题囊括其中,用全新的方式全面讲述了les理论及其应用。
书籍详细信息 | |||
书名 | 可压缩流的大涡模拟方法站内查询相似图书 | ||
9787510058202 如需购买下载《可压缩流的大涡模拟方法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 12.5 | 语种 | 英文 |
尺寸 | 23 × 15 | 装帧 | 平装 |
页数 | 印数 |
可压缩流的大涡模拟方法是世界图书出版公司北京公司于2013.3出版的中图分类号为 O351.2 的主题关于 可压缩流-研究-英文 的书籍。
(希) 克里斯托多罗 (Christodoulou,D.) , 缪爽, 著
(美) 克里斯托多罗 (Christodoulou,D.) , 缪爽, 著
(法) 萨戈 (Sagaut,P.) , 著
傅德熏, 马延文, 李新亮, 王强, 著
(美) 小约翰·D.安德森 (John D.Anderson) , 著
任安禄, 著
(德) 马伊达 (Majda,A.) , 著
(美) 库朗 (Courant,R.) , (德) 弗里德里斯 (Friedrichs,K.O.) , 著
郑兴, 胡振红, 马庆位, 著