出版社:清华大学出版社
年代:2008
定价:32.0
本书介绍数值计算的理论,方法和实现过程。
第1章 绪论
1.1 计算方法的研究内容与意义
1.2 误差
1.2 1 误差来源
1.2 2 误差、误差限与有效数字
1.2 3 误差的积累与传播
1.3 设十计算方法的基本原则
本章小结
复习题
第2章 非线生方程的数值解法
2.1 二分算法
2.1.1 二分法
2.1.2 线性插值二分法
2.2 迭代法
2.2.1 一般迭代法
2.2.2 迭代算法理论
2.2.3 加速收敛迭代法
2.3 牛顿法
2.4 弦截法
2.5 抛物线法
2.6 解作线性方程组的迭代法
本章小结
复习题
上机实验题
第3章 线性方程组的数值解法
3.1 高斯算法
3.1.1 高斯消去法
3.1.2 列主元高斯消去法
3.1.3 高斯一若当消去法
3.2 矩阵分解法
3.2.1 LU分解法
3.2.2 LDLT分解法和LLT分解法
3.2.3 追赶法
3.3 矩阵求逆及行列式的运算
3.4 向量与矩阵的范数
3.5 线性方程组的病态性及误差分析
3.6 线性方程组的迭代解法
3.6.1 迭代法的基本概念
3.6.2 雅可比迭代法和高斯-塞德尔迭代法
3.6.3 松弛迭代法
本章小结
复习题
上机实验题
第4章 矩阵的特征值和特征向量
4.1 矩阵的特征值和特征向量
4.1.1 背景知识
4.1.2 特征值与特征向量
4.1.3 特征值的范围
4.2 幂方法与反幂法
4.2.1 幂方法求按模最大的特征值和对应的特征向量
4.2.2 反幂法
4.2.3 幂方法的收敛性分析与加速技术
4.3 雅可比方法
4.3.1 雅可比方法的理论基础
4.3.2 旋转矩阵和旋转变换
4.3.3 雅可比方法
4.3.4 雅可比方法的收敛性
4.4 QR方法
4.4.1 QR分解
4.4.2 基本QR方法
本章小结
复习题
上机实验题
第5章 插值
5.1 插值的基本概念
5.2 拉格朗日插值多项式
5.2.1 线性插值
5.2.2 二次插值
5.2.3 n次拉格朗日插值多项式
5.3 牛顿插值多项式
5.3.1 差商
5.3.2 牛顿插值多项式
5.3.3 差分与等距节点的牛顿插值公式
5.4 埃尔米特插值
5.4.1 三次埃尔米特插值
5.4.2 2n+1次埃尔米特插值一
5.5 分段插值
5.5.1 分段线性插值
5.5.2 分段三次埃尔米特插值
5.6 样条插值
5.6.1 样条函数
5.6.2 三次样条函数
本章小结
复习题
上机实验题
第6章 拟合
6.1 拟合的基本概念与最小二乘原理
6.2 解线性超定方程组
6.3 离散最小二乘拟合问题的一般解法
6.3.1 线性组合模型下最小二乘拟合的一般解法
6.3.2 常用线性组合模型的最小二乘解
6.3.3 非线性组合模型的最小二乘拟合
6.4 离散正交多项式的拟合
6.5 广义最小二乘拟合问题
6.5.1 广义的多项式拟合
6.5.2 正交多项式拟合
本章小结
复习题
上机实验题
第7章 数值积分
7.1 数值积分的基本概念
7.2 梯形公式
7.2.1 梯形公式积分方法
7.2.2 梯形公式的误差分析
7.3 辛普森公式
7.3.1 辛普森公式积分方法
7.3.2 辛普森公式的误差分析
7.4 牛顿-柯特斯公式
7.4.1 牛顿-柯特斯公式积分方法
7.4.2 牛顿-柯特斯公式的误差分析
7.5 复合积分公式
7.5.1 复合梯形积分公式
7.5.2 复合辛普森积分公式
7.5.3 自适应变步长的复合求积方法
7.6 龙贝格公式
7.7 高斯型积分公式
7.7.1 高斯型积分公式的一般形式
7.7.2 高斯-勒让德积分公式
本章小结
复习题
上机实验题
第8章 数值微分
8.1 差商法求导数
8.2 拉格朗日插值法求导数
8.2.1 基本概念
8.2.2 两点微分公式
8.2.3 三点微分公式
8.2.4 n+1个插值点的微分公式
8.3 样条插值法求导数
本章小结
复习题
上机实验题
第9章 常微分方程的数值解法
9.1 常微分方程的基本概念
9.2 欧拉方法求解初值问题
9.2.1 向前欧拉法
9.2.2 改进的欧拉法
9.2.3 向后欧拉法
9.2.4 欧拉法与改进的欧拉法的误差分析
9.2.5 向前/向后欧拉法的收敛性与稳定性分析
9.3 龙格-库塔方法
9.3.1 二阶龙格-库塔方法
9.3.2 四阶龙格-库塔方法
9.3.3 龙格-库塔方法的误差与最优步长分析
9.4 其他求解常微分方程初值问题的数值方法
9.4.1 泰勒级数法
9.4.2 预测-校正法
9.5 微分方程组和高阶微分方程
9.5.1 微分方程组
9.5.2 高阶常微分方程
9.6 常微分方程的边值问题
9.6.1 边值问题的基本概念
9.6.2 线性打靶法
9.6.3 有限差分法
本章小结
复习题
上机实验题
第10章 现代计算方法简介
10.1 现代计算方法概述
10.2 禁忌搜索
10.2.1 算法概念与原理
10.2.2 算法流程与应用举例
10.2.3 算法发展与应用
10.3 模拟退火
10.3.1 算法概念与原理
10.3.2 算法流程与应用举例
10.3.3 算法发展与应用
10.4 神经网络
10.4.1 神经网络的原理与兴起
10.4.2 后向传播前馈型神经网络
10.4.3 神经网络的发展与应用
10.5 遗传算法
10.5.1 算法来源
10.5.2 算法流程与应用举例
10.5.3 遗传算法的发展与应用
10.6 蚁群优化
10.6.1 算法来源
10.6.2 算法流程与应用举例
10.6.3 算法发展与应用
10.7 粒子群优化
10.7.1 算法来源
10.7.2 算法流程与应用举例
10.7.3 算法发展与应用
本章小结
复习题
上机实验题
名词索引
参考文献
本书介绍计算机上常用的各类数值计算方法,阐述了计算方法的基本理论,分析了方法的收敛性与稳定性,并描述了方法的具体实现过程。本书内容包括计算方法的基本概念、误差理论、非线性方程求根、线性方程组求解、矩阵的特征值与特征向量计算、插值方法、曲线拟合、数值微分与数值积分、微分方程求解、现代数值计算方法等。本书图文并茂,既介绍了计算方法的基本理论,又以生动的图示说明计算方法的实际应用过程,叙述力求通俗易懂,具有很强的实用性。本书可作为高等院校计算机及相关专业本科生和研究生的教材及参考书,也可以作为广大科学工作者、工程技术人员的参考书与工具书。本书封面贴有清华大学出版社防伪标签, 无标签者不得销售。
本书分10个章节,详细阐述了计算方法的基本知识,讨论了数值计算的实际应用方法。具体内容包括计算方法的基本概念、误差理论、非线性方程求根、线性方程组求解、矩阵的特征值与特征向量计算、插值方法等。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。
书籍详细信息 | |||
书名 | 数值计算站内查询相似图书 | ||
9787302169918 《数值计算》pdf扫描版电子书已有网友提供下载资源链接 | |||
出版地 | 北京 | 出版单位 | 清华大学出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 32.0 | 语种 | 简体中文 |
尺寸 | 26 | 装帧 | 平装 |
页数 | 419 | 印数 | 3000 |
数值计算是清华大学出版社于2008.出版的中图分类号为 O241 的主题关于 数值计算-高等学校-教材 的书籍。