高等代数

高等代数

任北上, 主编

出版社:华中科技大学出版社

年代:2012

定价:25.0

书籍简介:

本教材的内容涉及和包括了《高等代数》抽象部分的六章内容以及选修的一章内容共七章。除此之外,本教材每章都设置了知识脉络框图,为读者理清本章内容知识结构的联系有所提示和帮助;为了方便读者查阅教材中出现的数学专业英语词汇,我们还增设了中-英文索引。

书籍目录:

Chapter 1Linear Spaces(线性空间)

1.1 Basic Concept(基本概念)

1.1.1 Intege (整数)

1.1.2 Mappings (映射)

1.1.3 Equivalence Relation (等价关系)

1.1.4 Exercises and Supplementary Exercises(习题及补充练习)

1.2 Definition, Examples and Simple Properties of Linear Spaces(线性空间的定义、例子和简单性质)(8)

1.2.1 Definition and Examples of Linear Space (线性空间的定义和例子)

1.2.2 Properties of Iinear Space (线性空间的性质)

1.2.3 Exercises and Supplementary Exercises(习题及补充练习)

1.3 Dime ion, Basis and Coordinates (维数、基与坐标)

1.3.1 Linear Combination and Linear Dependence (线性组合及线性相关)

1.3.2 Basis and Dime ion of Linear Space(线性空间的基与维数)

1.3.3 Coordinate of a Vector with Respect to the Basis(向量关于基的坐标)

1.3.4 Exercises and Supplementary Exercises(习题及补充练习)

1.4 Basis Change and Coordinate Tra formatio (基变换与坐标变换)

1.4.1 Basis Change (基变换)

1.4.2 Coordinate Tra formatio (坐标变换)

1.4.3 The Properties of the Tra ition Matrix(过渡矩阵的性质)

1.4.4 Exercises and Supplementary Exercises(习题及补充练习)

1.5 Linear Subspaces (线性子空间)

1.5.1 Definition and Examples of Linear Subspace (线性子空间的定义和例子)

1.5.2 Linear Subspaces Generated by a Set of Vecto (由向量组生成的线性子空间)

1.5.3 Inte ection Subspace and Sum Subspace (交子空间与和子空间)

1.5.4 Direct Sum of Subspaces (子空间的直和)

1.5.5 Exercises and Supplementary Exercises(习题及补充练习

1.6 Isomorphism of Linear Spaces (线性空间的同构)

1.6.1 Definition and Simple Properties of Isomorphism of Linear Spaces (线性空间同构的定义和简单性质)

1.6.2 The Application of Isomorphism of Linear Spaces (线性空间同构的应用)

1.6.3 Exercises(习题)

1.7 ※Factor Spaces (商空间)

1.7.1 Properties of Cosets (陪集的性质)

1.7.2 Factor Space (商空间)(48)

Test for Chapter 1 (第1章测试卷)

Biography of A. L. Cauchy

Chapter 2Linear Tra formatio (线性变换)

2.1 Definition and Operation of Linear Tra formation(线性变换的定义和运算)

2.1.1 Definition,Examples and Basic Properties of Linear Tra formation (线性变换的定义、范例及基本性质)

2.1.2 Operation of Linear Tra formatio (线性变换的运算)

2.1.3 The Image and Kernel of a Linear Tra formation(线性变换的像与核)

2.1.4 Exercises and Supplementary Exercises

2.2 The Matrix of a Linear Tra formation (线性变换的矩阵)

2.2.1 Matrix of a Linear Tra formation with Respect to the Basis (线性变换关于基的矩阵)

2.2.2 The Correspondence Relation Between the Linear Tra formation and the Matrix (线性变换与矩阵之间的对应关系)

2.2.3 The Relatio hip between the Coordinates of a Vector and Its Image(向量与它的像的坐标之间的关系)

2.2.4 Exercises and Supplementary Exercises

2.3 Invariant Subspaces (不变子空间)(80)

2.3.1 Definition and Examples of Invariant Subspace (不变子空间的定义和例子)

2.3.2 The Relatio hip between the Invariant Subspace and Simplified Matrix (不变子空间与化简矩阵的关系)

2.3.3 Exercises and Supplementary Exercises

2.4 Eigenvalues and Eigenvecto (特征值及特征向量)

2.4.1 Concept of Eigenvalues and Eigenvecto of a Linear Tra formation (线性变换的特征值和特征向量的概念)(87)

2.4.2 Method for Finding the Eigenvalues and Eigenvecto (特征值和特征向量的求法)

2.4.3 The Eigenvecto of A and Asubspaces(A的特征向量及A子空间)

2.4.4 Exercises and Supplementary Exercises

Test for Chapter 2 (第2章测试卷)

Biography of A.Cayley

Chapter 3Euclidean Spaces(欧几里得空间)

3.1 Concept of Euclidean Spaces (欧几里得空间的概念)

3.1.1 Definition and Examples of Euclidean Spaces (欧几里得空间的定义及实例)

3.1.2 Basic Properties of Euclidean Spaces (欧几里得空间的基本性质)

3.1.3 Exercises and Supplementary Exercises

3.2 Orthonormal Bases (标准正交基)

3.2.1 Orthogonal Set, Orthonormal Set, Orthogonal Basis and Orthonormal basis(正交组,标准正交组,正交基及标准正交基)

3.2.2 Existence of the Orthonormal Basis and Schmidt Orthogonalization Procees(标准正交基的存在性与施密特正交化过程)

3.2.3 The Isomorphism of Euclidean Spaces(欧几里得空间的同构)

3.2.4 Exercises and Supplementary Exercises

3.3 Orthogonal and Symmetric Linear Tra formatio (正交线性变换及对称线性变换)

3.3.1 Orthogonal Linear Tra formatio (正交线性变换)

3.3.2 Symmetric Linear Tra formatio (对称线性变换)

3.3.3 Exercises and Supplementary Exercises

3.4 Orthogonal Complement of Subspaces(子空间的正交补)

3.4.1 Definition and Properties of the Orthogonal Complement of Subspaces(子空间的正交补的定义和性质)

3.4.2 Exercises and Supplementary Exercises

3.5 ※Conjugate Linear Tra formatio and Unitary Spaces(共轭线性变换及酉空间)

3.5.1 Conjugate Linear Tra formatio (共轭线性变换)

3.5.2 Unitary Spaces (酉空间)

3.5.3 Exercises and Supplementary Exercises

Test for Chapter 3 (第3章测试卷)

Biography of Euclid

Chapter 4Matrices Similar to Diagonal Matrices(矩阵相似于对角形)

4.1 Diagonalization of Matrices (矩阵的对角化)

4.1.1 Eigenvalues, Eigenvecto and Characteristic Polynomials of a Matrix(矩阵的特征值、特征向量及特征多项式)

4.1.2 Concept of Diagonalization for Matrices (矩阵对角化的概念)

4.1.3 The Relatiohip between the Diagonalization of A and A(矩阵A与线性变换A的对角化之间的关系)

4.1.4 Exercises and Supplementary Exercises

4.2 Diagonalization of Real Symmetric Matrices and Symmetric Traformatio(实对称矩阵及对称变换的对角化)

4.2.1 Basic Properties and Theorems(基本性质和基本定理)

4.2.2 Diagonalization of Real Symmetric Matrices and Symmetric Traformatio(实对称矩阵及对称变换的对角化)

4.2.3 Examples (范例)

4.2.4 Exercises and Supplementary Exercises

4.3 CayleyHamilton Theorem and Minimum Polynomial(凯莱哈密尔顿定理及最小多项式)

4.3.1 Cayley  Hamilton Theorem (凯莱哈密尔顿定理)

4.3.2 Minimum Polynomials (最小多项式)

4.3.3 Exercises and Supplementary Exercises

Test for Chapter 4 (第4章测试卷)

Biography of C. Hermite

Chapter 5Jordan Canonical Form ofMatrices(矩阵的若当标准形)

5.1 Invariant Factor, Determinant Division and Condition for Matrices to be Similar(不变因子、行列式因子及矩阵相似的条件)

5.1.1 Necessary and Sufficient Condition for Two Matrices to be Similar(两个矩阵相似的充分必要条件)

5.1.2 Invariant Factor, Determinant Division and Canonical form of λMatrices(不变因子、行列式因子及λ矩阵的标准形)

5.1.3 Exercises and Supplementary Exercises-199

5.2 Elementary Divisor and Jordan Canonical Forms (初等因子及若当标准形)

5.2.1 Necessary and Sufficient Condition for Two λMatrices to be Equivalent(两个α矩阵等价的充分必要条件)

5.2.2 Basic Properties and Application of Jordan Canonical Forms(若当标准形的基本性质及应用)

5.2.3 ※Rational Canonical Forms of the Matrices (矩阵的有理标准形)

5.2.4 Exercises and Supplementary Exercises

Test for Chapter 5 (第5章测试卷)

Biography of C. Jordan

Chapter 6Quadratic Forms (二次型)

6.1 Standard Forms of General Quadratic Forms(二次型的标准形)

6.1.1 The Matrix Expression of Quadratic Forms and Linear Substitution of Variables (二次型的矩阵表示以及变量的线性代换)

6.1.2 Equivalence of Quadratic Forms and Congruence of Matrices (二次型的等价及矩阵的合同)

6.1.3 Sum of Squares and Standard Forms of Quadratic Forms (二次型的平方和与标准形)

6.1.4 Exercises and Supplementary Exercises

6.2 Properties and Classification of Real Quadratic Forms(实二次型的性质及分类)

6.2.1 Standard Forms of Real Quadratic Forms(实二次型的标准形)

6.2.2 Classification of Real Quadratic Forms (实二次型的分类)

6.2.3 Another Method for Determining of the Positive Definiteness and the Negative Definiteness of a Real Quadratic Form (确定实二次型的正定性和负定性的其他方法)

6.2.4 Exercises and Supplementary Exercises

Test for Chapter 6 (第6章测试卷)

Biography of P.S.Laplace

Chapter 7Bilinear Functio (双线性函数)

7.1 Linear Mappings (线性映射)

7.1.1 Definition, Examples and Basic Properties of Linear Mapping (线性映射的定义、范例和基本性质)

7.1.2 The Restriction and Exteion of a Linear Mapping (线性映射的限制及扩张)

7.1.3 The Univeal Properties of a Linear Mapping (线性映射的泛性质)

7.1.4 Direct Sum of Linear Spaces and Linear Mappings (线性空间和线性映射的直和)

7.1.5 Exercises and Supplementary Exercises

7.2 Bilinear Functio(双线性函数)

7.2.1 Linear Functio (线性函数)

7.2.2 Bilinear Functio (双线性函数)

7.2.3 Exercises and Supplementary Exercises

7.3 Dual Spaces (对偶空间)

7.3.1 Dual Spaces (对偶空间)

7.3.2 Dual Mappings (对偶映射)

7.3.3 Exercises and Supplementary Exercises

Test for Chapter 7 (第7章测试卷)

Biography of L.Kronecker

Index(中英文名词索引)

Bibliography(283)AOE

内容摘要:

高等代数是数学专业的一门重要的基础课程。它以矩阵、向量、线性空间和线性变换作为主要的研究对象,对培养学生的抽象思维能力、逻辑推理能力,以及数学专业的若干后续课程的学习都起着非常重要的作用。《AdvancedAlgebra(AbstractPart)》在每一章我们都选择了大批具有典型意义的例题,帮助学生举一反三,触类旁通,其中有一些就是本课程的重要结论。通过例题的学习,学生不仅可以更容易地理解抽象的数学概念和内容,疏通各知识链条环环相扣的彼此联系,而且更便于加深对课堂内容的吸纳和消化,从中掌握本课程的数学思想和数学方法。

书籍规格:

书籍详细信息
书名高等代数站内查询相似图书
9787560980300
如需购买下载《高等代数》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地武汉出版单位华中科技大学出版社
版次1版印次1
定价(元)25.0语种英文
尺寸26 × 18装帧平装
页数印数

书籍信息归属:

高等代数是华中科技大学出版社于2012.6出版的中图分类号为 O15 的主题关于 高等代数-高等学校-教材-英文 的书籍。