出版社:世界图书出版公司北京公司
年代:2012
定价:55.0
本书是一部讲述双曲几何的本科生教程,重点强调双曲流形上的几何。旨在为读者全面讲述基础结果,独立性强,完整,详尽,自成体系。
PrefaceChapter A.Hyperbolic Space A.1 Models for Hyperbolic Space A.2 Isometries of Hyperbolic Space; Hyperboloid Model A.3 Conformal Geometry A.4 Isometrics of Hyperbolic Space; Disc and Half-space Models A.5 Geodesics, Hyperbolic Subspaces and Miscellaneous Facts A.6 Curvature of Hyperbolic SpaceChapter B.Hyperbolic Manifolds and the Compact Two-dimeional Case B.1 Hyperbolic, Elliptic and Flat Manifolds B.2 Topology of Compact Oriented Surfaces B.3 Hyperbolic, Elliptic and Flat Surfaces B.4 TeichmiiUer SpaceChapter C.The Rigidity Theorem (Compact Case) C.1 Fit Step of the Proof; Exteion of Psettdo-isometries C.2 Second Step of the Proof; Volume of Ideal Simplices C.3 Gromov Norm of a Compact Manifold C.4 Third Step of the Proof;the Gromov Norm and the Vohtme Are Proportional C.5 Conclusion of the Proof, Corollaries and GeneralizatioChapter D.Margulis' Lemma and its Applicatio D.1 Margulis' Lemma D.2 Local Geometry of a Hyperbolic Manifohl D.3 Ends of a Hyperbolic .ManifoldChapter E.The Space of Hyperbolic Manifolds and the Volume Function E.1 The Chabauty and the Geometric Topology E.2 Convergence in the Geometric Topology; Opening Cusps. The Case of Dimeion at least Three E.3 The Case of Dimeion Different from Three Conclusio and Examples E.4 The Three-dimeional Case; Josgeen's Part of the So-called Jorgeen-Thuton Theory E.5 The Three-dimeional Case. Thuton's Hyperbolic Surgery Theorem; Statement and Preliminaries E.5-i Definition and Fit Properties of T3(Non-compact Three-manifolds with "Triangulation" Without Vertices) E.5-ii Hyperbolic Structures on an Element of T3 and Realization of the Complete Structure E.5-iii Elements of T3 and Standard Spines E.5-iv Some Links Whose Complements are Realized as Elements of T3 E.6 Proof of Thuton's Hyperbolic Surgery Theorem E.6-i Algebraic Equatio of H(M) (Hyperbolic Structures Supported by M∈T3) E.6-ii Dimeion of H(M); General Case E.6-iii The Case M is Complete Hyperbolic; the Space of Deformatio E.6-iv Completion of the Deformed Hyperbolic Structures and Conclusion of the Proof E.7 Applicatio to the Study of the Volume Function and Complements about Three-dimeional Hyperbolic GeometryChapter F. Bounded Cohomology, a Rough Outline F.1 Singudar Cohomology F.2 Bounded Singular Coliomology F.3 Flat Fiber Bundles F.4 Euler Class of a Flat Vector Bundle F.5 Flat Vector Bundles on Surfaces and the Milnor-Sullivan Theorem F.6 Sullivan's Conjecture and Amenable GroupsSubject IndexNotation IndexReferences
Riccardo Benedetti、Carlo Petronio所著的《双曲几何讲义》是一部讲述双曲几何的本科生教程,重点强调双曲流形上的几何。旨在为读者全面讲述基础结果,独立性强,完整,详尽,自成体系。在讲述双曲空间的经典材料和Teichmüller空间之后,接着以Mostow 刚性定理和Margulis定理这两个基本结论为核心展开讲述。这些形成了学习Chabauty和几何拓扑的基础;并且深入全面地剖析了Wang定理和 Jorgensen-Thurston 理论,给予讲述三维例子很大的空间;同时,以依附于理想四面体的三流形表示为基础,全面介绍了双曲手术定理。
书籍详细信息 | |||
书名 | 双曲几何讲义站内查询相似图书 | ||
9787510046322 如需购买下载《双曲几何讲义》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 55.0 | 语种 | 英文 |
尺寸 | 21 × 17 | 装帧 | 平装 |
页数 | 348 | 印数 |
双曲几何讲义是世界图书出版公司北京公司于2012.6出版的中图分类号为 O184 的主题关于 罗巴切夫斯基几何-高等学校-教材-英文 的书籍。