统计学基础

统计学基础

(美) 哈斯蒂 (Hastie,T.) , 著

出版社:世界图书出版公司北京公司

年代:2008

定价:88.0

书籍简介:

本书旨在让读者深入了解数据挖掘和预测。目次:导论;监督学习概述;线性回归模型;线性分类方法;基展开与正则性;核方法;模型评估与选择;模型参考与平均可加性模型,树与相关方法;神经网络;支持向量机器与弹性准则;原型法和最近邻居;无监督学习。

书籍目录:

Preface

1Introduction

2OverviewofSupervisedLearning

2.1Introduction

2.2VariableTypesandTerminology

2.3TwoSimpleApproachestoPrediction:LeastSquaresandNearestNeighbors

2.3.1LinearModelsandLeastSquares

2.3.2Nearest-NeighborMethods

2.3.3FromLeastSquarestoNearestNeighbors

2.4StatisticalDecisionTheory

2.5LocalMethodsinHighDimensions

2.6StatisticalModels,SupervisedLearningandFunctionApproximation

2.6.1AStatisticalModelfortheJointDistributionPr(X,Y)

2.6.2SupervisedLearning

2.6.3FunctionApproximation

2.7StructuredRegressionModels

2.7.1DifficultyoftheProblem

2.8ClassesofRestrictedEstimators

2.8.1RoughnessPenaltyandBayesianMethods

2.8.2KernelMethodsandLocalRegression

2.8.3BasisFunctionsandDictionaryMethods

2.9ModelSelectionandtheBias-VarianceTradeoff

BibliographicNotes

Exercises

3LinearMethodsforRegression

3.1Introduction

3.2LinearRegressionModelsandLeastSquares

3.2.1Example:ProstateCancer

3.2.2TheGanss-MarkovTheorem

3.3MultipleRegressionfromSimpleUnivariateRegression

3.3.1MultipleOutputs

3.4SubsetSelectionandCoefficientShrinkage

3.4.1SubsetSelection

3.4.2ProstateCancerDataExamplefContinued)

3.4.3ShrinkageMethods

3.4.4MethodsUsingDerivedInputDirections

3.4.5Discussion:AComparisonoftheSelectionandShrinkageMethods

3.4.6MultipleOutcomeShrinkageandSelection

3.5CompntationalConsiderations

BibliographicNotes

Exercises

4LinearMethodsforClassification

4.1Introduction

4.2LinearRegressionofanIndicatorMatrix

4.3LinearDiscriminantAnalysis

4.3.1RegularizedDiscriminantAnalysis

4.3.2ComputationsforLDA

4.3.3Reduced-RankLinearDiscriminantAnalysis

4.4LogisticRegression

4.4.1FittingLogisticRegressionModels

4.4.2Example:SouthAfricanHeartDisease

4.4.3QuadraticApproximationsandInference

4.4.4LogisticRegressionorLDA7

4.5SeparatingHyperplanes

4.5.1RosenblattsPerceptronLearningAlgorithm

4.5.2OptimalSeparatingHyperplanes

BibliographicNotes

Exercises

5BasisExpansionsandRegularizatlon

5.1Introduction

5.2PiecewisePolynomialsandSplines

5.2.1NaturalCubicSplines

5.2.2Example:SouthAfricanHeartDisease(Continued)

5.2.3Example:PhonemeRecognition

5.3FilteringandFeatureExtraction

5.4SmoothingSplines

5.4.1DegreesofFreedomandSmootherMatrices

5.5AutomaticSelectionoftheSmoothingParameters

5.5.1FixingtheDegreesofFreedom

5.5.2TheBias-VarianceTradeoff

5.6NonparametricLogisticRegression

5.7MultidimensionalSplines

5.8RegularizationandReproducingKernelHilbertSpaces..

5.8.1SpacesofPhnctionsGeneratedbyKernels

5.8.2ExamplesofRKHS

5.9WaveletSmoothing

5.9.1WaveletBasesandtheWaveletTransform

5.9.2AdaptiveWaveletFiltering

BibliographicNotes

Exercises

Appendix:ComputationalConsiderationsforSplines

Appendix:B-splines

Appendix:ComputationsforSmoothingSplines

6KernelMethods

6.1One-DimensionalKernelSmoothers

6.1.1LocalLinearRegression

6.1.2LocalPolynomialRegression

6.2SelectingtheWidthoftheKernel

6.3LocalRegressioninJap

6.4StructuredLocalRegressionModelsin]ap

6.4.1StructuredKernels

6.4.2StructuredRegressionFunctions

6.5LocalLikelihoodandOtherModels

6.6KernelDensityEstimationandClassification

6.6.1KernelDensityEstimation

6.6.2KernelDensityClassification

6.6.3TheNaiveBayesClassifier

6.7RadialBasisFunctionsandKernels

6.8MixtureModelsforDensityEstimationandClassification

6.9ComputationalConsiderations

BibliographicNotes

Exercises

7ModelAssessmentandSelection

7.1Introduction

7.2Bias,VarianceandModelComplexity

7.3TheBias-VarianceDecomposition

7.3.1Example:Bias-VarianceTradeoff

7.4OptimismoftheTrainingErrorRate

7.5EstimatesofIn-SamplePredictionError

7.6TheEffectiveNumberofParameters

7.7TheBayesianApproachandBIC

7.8MinimumDescriptionLength

7.9VapnikChernovenkisDimension

7.9.1Example(Continued)

7.10Cross-Validation

7.11BootstrapMethods

7.11.1Example(Continued)

BibliographicNotes

Exercises

8ModelInferenceandAveraging

8.1Introduction

8.2TheBootstrapandMaximumLikelihoodMethods

8.2.1ASmoothingExample

8.2.2MaximumLikelihoodInference

8.2.3BootstrapversusMaximumLikelihood

8.3BayesianMethods

8.4RelationshipBetweentheBootstrapandBayesianInference

8.5TheEMAlgorithm

8.5.1Two-ComponentMixtureModel

8.5.2TheEMAlgorithminGeneral

8.5.3EMasaMaximization-MaximizationProcedure

8.6MCMCforSamplingfromthePosterior

8.7Bagging

8.7.1Example:TreeswithSimulatedData

8.8ModelAveragingandStacking

8.9StochasticSearch:Bumping

BibliographicNotes

Exercises

9AdditiveModels,Trees,andRelatedMethods

10BoostingandAdditiveTrees

11NeuralNetworks

12SupportVectorMachinesandFlexibleDiscriminants

13PrototypeMethodsandNearest-Neighbors

14UnsupervisedLearning

References

AuthorIndex

Index

内容摘要:

  Thisbookisourattempttobringtogethermanyoftheimportantnewideasinlearning,andexplaintheminastatisticalframework.Whilesomemathematicaldetailsareneeded,weemphasizethemethodsandtheirconceptualunderpinningsratherthantheirtheoreticalproperties.Asaresult,wehopethatthisbookwillappealnotjusttostatisticiansbutalsotoresearchersandpractitionersinawidevarietyoffields.

书籍规格:

书籍详细信息
书名统计学基础站内查询相似图书
9787506292313
如需购买下载《统计学基础》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位世界图书出版公司北京公司
版次1版印次1
定价(元)88.0语种英文
尺寸14装帧平装
页数印数 2000

书籍信息归属:

统计学基础是世界图书出版公司北京公司于2008.05出版的中图分类号为 C8 的主题关于 统计学-英文 的书籍。