出版社:高等教育出版社
年代:2007
定价:36.3
本书是“天元基金影印数学丛书”之一,是一本内容十分翔实的实分析教材。它包含集论,点集拓扑,测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等。
Preface
Acknowledgments
Preliminaries
1 Countable sets
2 The Cantor set
3 Cardinality
3.1 Some examples
4 Cardinality of some infinite Cartesian products
5 Orderings, the maximal principle, and the axiom of choice
6 Well-ordering
6.1 The first uncountable
Problems and Complements
Ⅰ Topologies and Metric Spaces
1 Topological spaces
1.1 Hausdorff and normal spaces
2 Urysohns lemma
3 The Tietze extension theorem
4 Bases, axioms of countability, and product topologies
4.1 Product topologies
5 Compact topological spaces
5.1 Sequentially compact topological spaces
6 Compact subsets of RN
7 Continuous functions on countably compact spaces
8 Products of compact spaces
9 Vector spaces
9.1 Convex sets
9.2 Linear maps and isomorphisms
10 Topological vector spaces
10.1 Boundedness and continuity
11 Linear functionals
12 Finite-dimensional topological vector spaces
12.1 Locally compact spaces
13 Metric spaces
13.1 Separation and axioms of countability
13.2 Equivalent metrics
13.3 Pseudometrics
14 Metric vector spaces
14.1 Maps between metric spaces
15 Spaces of continuous functions
15.1 Spaces of continuously differentiable functions
16 On the structure of a complete metric space
17 Compact and totally bounded metric spaces
17.1 Precompact subsets of X
Problems and Complements
Ⅱ Measuring Sets
1 Partitioning open subsets of RN
2 Limits of sets, characteristic functions, and or-algebras
3 Measures
3.1 Finite,a-finite, and complete measures
3.2 Some examples
4 Outer measures and sequential coverings
4.1 The Lebesgue outer measure in RN
4.2 The Lebesgue-Stieltjes outer measure
5 The Hausdorff outer measure in RN
6 Constructing measures from outer measures
7 The Lebesgue——Stieltjes measure on R
7.1 Borel measures
8 The Hausdorff measure on RN
9 Extending measures from semialgebras to a-algebras
9.1 On the Lebesgue-Stieltjes and Hausdorff measures
10 Necessary and sufficient conditions for measurability
11 More on extensions from semialgebras to a-algebras
12 The Lebesgue measure of sets in RN
12.1 A necessary and sufficient condition of naeasurability
13 A nonmeasurable set
14 Borel sets, measurable sets, and incomplete measures
14.1 A continuous increasing function f : [0, 1] → [0, 1]
14.2 On the preimage of a measurable set
14.3 Proof of Propositions 14.1 and 14.2
15 More on Borel measures
15.1 Some extensions to general Borel measures
15.2 Regular Borel measures and Radon measures
16 Regular outer measures and Radon measures
16.1 More on Radon measures
17 Vitali coverings
18 The Besicovitch covering theorem
19 Proof of Proposition 18.2
20 The Besicovitch measure-theoretical covering theorem
Problems and Complements
Ⅲ The Lebesgue Integral
1 Measurable functions
2 The Egorov theorem
2.1 The Egorov theorem in RN
2.2 More on Egorovs theorem
3 Approximating measurable functions by simple functions
4 Convergence in measure
5 Quasi-continuous functions and Lusins theorem
6 Integral of simple functions
7 The Lebesgue integral of nonnegative functions
8 Fatous lemma and the monotone convergence theorem
9 Basic properties of the Lebesgue integral
10 Convergence theorems
11 Absolute continuity of the integral
12 Product of measures
13 On the structure of (A*p )
14 The Fubini-Tonelli theorem
14.1 The Tonelli version of the Fubini theorem
15 Some applications of the Fubini-Tonelli theorem
15.1 Integrals in terms of distribution functions
15.2 Convolution integrals
15.3 The Marcinkiewicz integral
16 Signed measures and the Hahn decomposition
17 The Radon-Nikodym theorem
18 Decomposing measures
18.1 The Jordan decomposition
18.2 The Lebesgue decomposition
18.3 A general version of the Radon-Nikodym theorem
Problems and Complements
IV Topics on Measurable Functions of Real Variables
1 Functions of bounded variations
2 Dini derivatives
3 Differentiating functions of bounded variation
4 Differentiating series of monotone functions
5 Absolutely continuous functions
6 Density of a measurable set
7 Derivatives of integrals
8 Differentiating Radon measures
9 Existence and measurability of Dvv
9.1 Proof of Proposition 9.2
10 Representing Dvv
10.1 Representing Duv for v
《实分析(影印版)》是一本内容十分翔实的实分析教材。它包含集论,点集拓扑。测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理,Calderon—Zygmund分解定理,Fefferman—Stein定理。Marcinkiewlcz插定理等实分析中有用的内容。
《实分析(影印版)》内容由浅入深。读者具有扎实的数学分析知识基础便可学习《实分析(影印版)》,学完《实分析(影印版)》的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。
《实分析(影印版)》主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。《实分析(影印版)》可作为高年级本科生教材或参考书。
书籍详细信息 | |||
书名 | 实分析站内查询相似图书 | ||
丛书名 | 天元基金影印数学丛书 | ||
9787040226652 如需购买下载《实分析》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 高等教育出版社 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 36.3 | 语种 | 英文 |
尺寸 | 23 | 装帧 | 平装 |
页数 | 印数 | 3000 |
(美) 麦克唐纳 (McDonald,J.N.) , 著
(美) 罗伊登 (Royden,H.L.) , 著
(美) 福伦德 (Folland,G.B.) , 著
(美) H.L.罗伊登 (H. L. Royden) , (美) P.M.菲茨帕特里克 (P. M. Fitzpatrick) , 著
(美) 斯坦 (Stein,E.M.) , 著
(美) 斯坦恩 (Stein,E.M.) , 著
(美) 布鲁克纳 (Bruckner,A.) , 等著
(加) 汤姆森 (Thomson,B.S.) , (美) 布鲁克纳 (Bruckner,J.B.) , (美) 布鲁克纳 (Bruckner,A.M.) , 著
(美) 阿里普兰蒂斯 (Aliprantis,C.D.) , 著