出版社:世界图书出版公司北京公司
年代:2010
定价:45.0
本书旨在解决守恒定律的双曲系统解问题。全书分为两个部分,第一部分讲述了方程的基本数学理论,如弱解问题,熵条件,并且详细介绍了黎曼问题解的波结构,强调了非连续解不可或缺的数值方法工具和技巧;第二部分致力于解决高分解激波捕获方法的发展历程。
Mathematical Theory
1 Introduction
1.1 Conservation laws
1.2 Applications
1.3 Mathematical difficulties
1.4 Numerical difficulties
1.5 Some references
2 The Derivation of Conservation Laws
2.1 Integral and differential forms
2.2 Scalar equations
2.3 Diffusion
3 Scalar Conservation Laws
3.1 The linear advection equation
3.1.1 Domain of dependence
3.1.2 Nonsmooth data
3.2 Burgers' equation
3.3 Shock formation
3.4 Weak solutions
3.5 The Riemann Problem
3.6 Shock speed
3.7 Manipulating conservation laws
3.8 Entropy conditions
3.8.1 Entropy functions
4 Some Scalar Examples
4.1 Traffic flow
4.1.1 Characteristics and sound speed
4.2 Two phase flow
5 Some Nonlinear Systems
5.1 The Euler equations
5.1.1 Ideal gas
5.1.2 Entropy
5.2 Isentropic flow
5.3 Isothermal flow
5.4 The shallow water equations
Linear Hyperbolic Systems
6.1 Chaxacteristic variables
6.2 Simple waves
6.3 The wave equation
6.4 Linearization of nonlinear systems
6.4.1 Sound waves
6.5 The Riemann Problem
6.5.1 The phase plane
7 Shocks and the Hugoniot Locus
7.1 The Hvgoniot locus
7.2 Solution of the Riemann problem
7.2.1 Riemann problems with no solution
7.3 Genuine nonlinearity
7.4 The Lax entropy condition
7.5 Linear degeneracy
7.6 The Riemavn problem
Rarefaction Waves and Integral Curves
8.1 Integral curves
8.2 Rarefaction waves
8.3 General solution of the Riemann problem
8.4 Shock collisions
9 The Riemann problem for the Euler equations
9.1 Contact discontinuities
9.2 Solution to the Riemann problem
II Numerical Methods
10 Numerical Methods for Linear Equations
10.1 The global error and convergence
10.2 Norms
10.3 Local truncation error
10.4 Stability
10.5 The Lax Equivalence Theorem
10.6 The CFL condition
10.7 Upwind methods
11 Computing Discontinuous Solutions
11.1 Modified equations
11.1.1 First order methods and diffusion
11.1.2 Second order methods and dispersion
11.2 Accuracy
12 Conservative Methods for Nonlinear Problems
12.1 Conservative methods
12.2 Consistency
12.3 Discrete conservation
12.4 The Lax-Wendroff Theorem
12.5 The entropy condition
13 Godunov's Method
13.1 The Courat-Isaacson-Pees method
13.2 Godunov's method
13.3 Linear systems
13.4 The entropy condition
13.5 Scalar conservation laws
14 Approximate Piemann Solvers
14.1 General theory
14.1.1 The entropy condition
14.1.2 Modified conservation laws
14.2 Roe's approximate Riemann solver
14.2.1 The numerical flux function for Roe's solver
14.2.2 A sonic entropy fix
14.2.3 The scalar case
14.2.4 A Roe matrix for isothermal flow
15 Nonlinear Stability
15.1 Convergence notions
15.2 Compactness
15.3 Total variation stability
15.4 Total variation diminishing methods
15.5 Monotonicity preserving methods
15.6 L1-contracting numerical methods
15.7 Monotone methods
16 High Resolution Methods
16.1 Artificial Viscosity
16.2 Flux-limiter methods
16.2.1 Linear systems
16.3 Slope-limiter methods
16.3.1 Linear Systems
16.3.2 Nonlinear scalar equations
16.3.3 Nonlinear Systems
17 Semi-discrete Methods
17.1 Evolution equations for the cell averages
17.2 Spatial accuracy
17.3 Reconstruction by primitive functions
17.4 ENO schemes
18 Multidimensional Problems
18.1 Semi-discrete methods
18.2 Splitting methods
18.3 TVD Methods
18.4 Multidimensional approaches
Bibliography
《守恒定律用的数值法》是由世界图书出版公司出版的。 《守恒定律用的数值法》内容简介:These notes developed from a course on the numerical solution of conservation lawsfirst taught at the University of Washington in the fall of 1988 and then at ETH duringthe following spring.The overall emphasis is on studying the mathematical tools that are essential in de-veloping, analyzing, and successfully using numerical methods for nonlinear systems ofconservation laws, particularly for problems involving shock waves. A reasonable un-derstanding of the mathematical structure of these equations and their solutions is firstrequired, and Part I of these notes deals with this theory. Part II deals more directly withnumerical methods, again with the emphasis on general tools that are of broad use. Ihave stressed the underlying ideas used in various classes of methods rather than present-ing the most sophisticated methods in great detail. My aim was to provide a sufficientbackground that students could then approach the current research literature with thenecessary tools and understanding.【作者简介】作者:(美国)勒维克(Randall J.LeVeque)
书籍详细信息 | |||
书名 | 守恒定律用的数值法站内查询相似图书 | ||
9787510027406 如需购买下载《守恒定律用的数值法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 45.0 | 语种 | 英文 |
尺寸 | 26 × 19 | 装帧 | 平装 |
页数 | 232 | 印数 | 1000 |
守恒定律用的数值法是世界图书出版公司北京公司于2010.9出版的中图分类号为 O175.27 的主题关于 双曲型方程-数值计算-英文 的书籍。
(法) 科伦 (Jean-Michel Coron) , 李大潜, 李亚纯, 编
(美) 达夫莫斯 (Dafermos,C.M.) , 著
应隆安, 滕振寰, 著
李大潜, 彭跃军, 饶伯鹏, 主编
刘法贵, 著
姜晓丽, 著
陆云光, 成志新, 编著
孙卫涛, 编著
李大潜, 江松, 主编