出版社:中国金融出版社
年代:2011
定价:35.0
本书是作者的博士论文,运用统计学的方法,建立波动模型对证券波动进行分析。
List of Figures
List of Tables
Abstract
Acknowledgements
l.General Introduction, Changing Volatility Models and European Options Pricing
1.1 Generallntroduction
1. 2 Introduction to Changing Volatility Models
1. 3 Model Completeness and European Option Pricing
1.4 Single Period Volatility Changing Problems
1. 4. 1 Fixed Volatility Changing Time with BamerB
1. 4. 2 Random Volatility Changing Time with a Hitting BarrierB
1.5 Multi-Period Volatility Changing Problems
1.6 Extension to Incomplete Market
1. 6. 1 A Simple Random Volatility Changing Model
Extension to Stochastic Volatility Model
1. 6. 2 Future Research
1.7 Appendix: Proof
1. 7. 1 Proof of Proposition 1. 1
1. 7. 2 Proof of Proposition 1. 2
1. 7. 3 Proof of Proposition 1. 3
1. 7.4 Proof of Proposition 1. 4
1. 7. 5 Proof of Proposition 1. 5
1. 7. 6 Proof of Proposition 1. 6
1. 7. 7 Theorem 2. 2 of [132] : Uniqueness of the
F.quivalent Martingale Measure
2.Introduction to Stochastic Volatility and Local Stochastic Volati
lity Models
2. 1 Stochastic Volatility Models-A General Set-Up
2. 1. 1 Model Set-Up
2. 1. 2 Change of Measure and Model Incompleteness
2. 2 Making the Stochastic Volatility Economy Complete
2. 3 European Option Price
2. 4 Local Stochastic Volatility Models: An Introduction
2. 5 Adjustment to the Calculation of Greeks in a Non
Constant Implied Volatility Model
3.Foreign Exchange Options with Local Stochastic Volatility and Stochastic Interest Rates
3. 1 Introduction
3.2 The FX-IR Hybrid Model
3.3 Asymptotic Expansion
3. 3. 1 A Brief Introduction
3. 3. 2 European Option Pricing and Implied Volatility
3.4 Model Implementation and Numerical Results
3. 5 FX Option Pricing via Fourier Transform under Stochastic Interest Rates, Stochastic Volatility and the Jump Process
3. 5. 1 The Multi-Factor Model
3. 5. 2 Change of Measure and Option Pricing
3. 5. 3 Model Implementation
3. 5. 4 Calibration Results for the USD/JPY Market
3. 6 Perfect Hedging with Stochastic Interest Rates and Local Stochastic Volatility
3. 6. 1 Hedging with Options
……
4. Non-Biased Monte Carlo Simulation for a Heston-Type Stochastic Volatility Model
5. The LIBOR Market Model with Stochastic Volatility and Jump
Processes
Bibliography
《论波动率模型》基于笔者于伦敦帝国理工学院和三菱UFJ证券国际(伦敦)的联合项目中所完成的金融数学博士论文.该联合项目始于2005年年底,旨在探讨随机波动率在股票、外汇、利率等金融资产的建模中的应用以及基于此模型之上对金融衍生品的定价。随机(非常量)的波动率模型是近些年来热门的金融数学研究方向,特别是在2008年金融危机动荡的市场中更是受到了学术界和金融业界的熏视,《论波动率模型》最大的贡献在于提供了当前最全面的随机金融模型架构,包括随机波动率、局部波动率、随机利率以及跳跃过程对外汇走势的建模,以及对金融衍生品(欧式期权)定价的半解析解。其他几个章节涉及了对另外的波动率模型的提出和讨论,以及随机波动率模型在金融业界中的实际应用和衍生品定价的范例。
笔者利用跨学术和金融业界的优势,为大家展现了国际金融工程学术研究和金融衍生品发展的最前沿画卷。
书籍详细信息 | |||
书名 | 论波动率模型站内查询相似图书 | ||
9787504960337 如需购买下载《论波动率模型》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 中国金融出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 35.0 | 语种 | 英文 |
尺寸 | 24 × 17 | 装帧 | 平装 |
页数 | 印数 |
论波动率模型是中国金融出版社于2011.8出版的中图分类号为 F832.51 的主题关于 股票市场-研究-中国-英文 的书籍。