出版社:世界图书出版公司北京公司
年代:2008
定价:55.0
本书是Springer出版的《应用数学教材》丛书。目次:基本概念;Sobolev空间;椭圆边界值问题变分公式;有限元空间结构;Sobolev空间中的多项式近似理论.n维变分问题;有限元多栅法;加性Schwarz预条件;极大范数估计;自适应网格; 变分病态、在平面弹性力学中的应用;混合法;迭代技巧用于混合法;算子插值理论的应用。读者对象:数学、物理和工程专业的研究生和技术人员。
SeriesPreface
PrefacetotheSecondEdition
PrefacetotheFirstEdition
0BasicConcepts
0.1WeakFormulationofBoundaryValueProblems
0.2Ritz-GalerkinApproximation
0.3ErrorEstimates
0.4PiecewisePolynomialSpaces-TheFiniteElementMethod
0.5RelationshiptoDifferenceMethods
0.6ComputerImplementationofFiniteElementMethods
0.7LocalEstimates
0.8AdaptiveApproximation
0.9WeightedNormEstimates
0.xExercises
1SobolevSpaces
1.1ReviewofLebesgueIntegrationTheory
1.2Generalized(Weak)Derivatives
1.3SobolevNormsandAssociatedSpaces
1.4InclusionRelationsandSobolevsInequality
1.5ReviewofChapter0
1.6TraceTheorems
1.7NegativeNormsandDuality
1.xExercises
2VariationalFormulationofEllipticBoundaryValueProblems
2.1Inner-ProductSpaces
2.2HilbertSpaces
2.3ProjectionsontoSubspaces
2.4RieszRepresentationTheorem
2.5FormulationofSymmetricVariationalProblems
2.6FormulationofNonsymmetricVariationalProblems
2.7TheLax-MilgramTheorem
2.8EstimatesforGeneralFiniteElementApproximation
2.9Higher-dimensionalExamples
2.xExercises
3TheConstructionofaFiniteElementSpace
3.1TheFiniteElement
3.2TriangularFiniteElements
TheLagrangeElement
TheHermiteElement
TheArgyrisElement
3.3TheInterpolant
3.4EquivalenceofElements
3.5RectangularElements
TensorProductElements
TheSerendipityElement
3.6Higher-dimensionalElements
3.7ExoticElements
3.xExercises
4PolynomialApproximationTheoryinSobolevSpaces
4.1AveragedTaylorPolynomials
4.2ErrorRepresentation
4.3BoundsforRieszPotentials
4.4BoundsfortheInterpolationError
4.5InverseEstimates
4.6Tensor-productPolynomialApproximation
4.7IsoparametricPolynomialApproximation
4.8InterpolationofNon-smoothFunctions
4.9ADiscreteSobolevInequality
4.xExercises
5n-DimensionalVariationalProblems
5.1VariationalFormulationofPoissonsEquation.
5.2VariationalFormulationofthePureNeumannProblem.
5.3CoercivityoftheVariationalProblem
5.4VariationalApproximationofPoissonsEquation
5.5EllipticRegularityEstimates
5.6GeneralSecond-OrderEllipticOperators
5.7VariationalApproximationofGeneralEllipticProblems.
5.8Negative-NormEstimates
5.9ThePlate-BendingBiharmonicProblem
5.xExercises
6FiniteElementMultigridMethods
6.1AModelProblem
6.2Mesh-DependentNorms
6.3TheMultigridAlgorithm
6.4ApproximationProperty
6.5W-cycleConvergenceforthekthLevelIteration
6.6V-cycleConvergenceforthekthLevelIteration
6.7FullMultigridConvergenceAnalysisandWorkEstimates
6.xExercises
7AdditiveSchwarzPreconditioners
7.1AbstractAdditiveSchwarzFramework
7.2TheHierarchicalBasisPreconditioner
7.3TheBPXPreconditioner
7.4TheTwo-levelAdditiveSchwarzPreconditioner
7.5NonoverlappingDomainDecompositionMethods
7.6TheBPSPreconditioner
7.7TheNeumann-NeumannPreconditioner
7.xExercises
8Max-normEstimates
8.1MainTheorem
8.2ReductiontoWeightedEstimates
8.3ProofofLemma8.2.6
8.4ProofsofLemmas8.3.7and8.3.11
8.5LpEstimates(RegularCoefficients)
8.6LpEstimates(IrregularCoefficients)
8.7ANonlinearExample
8.xExercises
9AdaptiveMeshes
9.1AprioriEstimates
9.2ErrorEstimators
9.3LocalErrorEstimates
9.4EstimatorsforLinearFormsandOtherNorms
9.5ConditioningofFiniteElementEquations
9.6BoundsontheConditionNumber
9.7ApplicationstotheConjugate-GradientMethod
9.xExercises
10VariationalCrimes
10.1DeparturefromtheFramework
10.2FiniteElementswithInterpolatedBoundaryConditions.
10.3NonconformingFiniteElements
10.4IsoparametricFiniteElements
10.xExercises
11ApplicationstoPlanarElasticity
11.1TheBoundaryValueProblems
11.2WeakFormulationandKornsInequality
11.3FiniteElementApproximationandLocking
11.4ARobustMethodforthePureDisplacementProblem..
11.xExercises
12MixedMethods
12.1ExamplesofMixedVariationalFormulations
12.2AbstractMixedFormulation
12.3DiscreteMixedFormulation
12.4ConvergenceResultsforVelocityApproximation
12.5TheDiscreteInf-SupCondition
12.6VerificationoftheInf-SupCondition
12.xExercises
13IterativeTechniquesforMixedMethods
13.1IteratedPenaltyMethod
13.2StoppingCriteria
13.3AugmentedLagrangianMethod
13.4ApplicationtotheNavier-StokesEquations
13.5ComputationalExamples
13.xExercises
14ApplicationsofOperator-InterpolationTheory
14.1TheRealMethodofInterpolation
14.2RealInterpolationofSobolevSpaces
14.3FiniteElementConvergenceEstimates
14.4TheSimultaneousApproximationTheorem
14.5PreciseCharacterizationsofRegularity
14.xExercises
References
Index
有限元法被广泛用于工程设计和工程分析。本书是Springer出版的《应用数学教材》丛书之15。全书分成15章,在第1版的基础上增加了加性Schwarz预条件和自适应格;书中不但提供有限元法系统的数学理论。还兼重在工程设计和分析中的应用算法效率、程序开发和较难的收敛问题。
书籍详细信息 | |||
书名 | 有限元方法的数学理论站内查询相似图书 | ||
9787506292535 如需购买下载《有限元方法的数学理论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 2版 | 印次 | 1 |
定价(元) | 55.0 | 语种 | 英文 |
尺寸 | 14 | 装帧 | 平装 |
页数 | 印数 | 1000 |
有限元方法的数学理论是世界图书出版公司北京公司于2008.08出版的中图分类号为 O241.82 的主题关于 有限元法-数学理论-英文 的书籍。
杜其奎, 陈金如, 编著
(美) 布雷 (Brenner,S.C.) , 著
石钟慈, 王鸣, 著
(英) 监凯维奇 (Zienkiewicz,O.C.) , 著
(英) 监凯维奇 (Zienkiewica,O.C.) , (美) 泰勒 (Taylor,R.L.) , 著
石钟慈, 王鸣, 著
石钟慈, 主编
王家林, 张俊波, 编著
(德) 布拉艾斯 (Braess,D.) , 著