半导体物理性能手册

半导体物理性能手册

(日) 足立贞夫, 主编

出版社:哈尔滨工业大学出版社

年代:2013

定价:180.0

书籍简介:

本册由9章组成,介绍Ⅲ—Ⅴ族半导体化合物,1.立方氮化硼(c bn),2.六角氮化硼(h bn),3.磷化硼(BP),4.硼砷化物(BAs),5.纤锌矿型氮化铝(w—AlN),6.立方氮化铝(c—AlN),7.磷化铝(A1P),8.铝砷化物(唉),9.铝锑化物(AlSb),共9种化合物的结构属性、热性能、弹性、声子和晶格振动性质、集成效应和相关属性、能带结构:能带、能带结构:电子和孔有效质量、电子形变势、电子亲和力和肖特基势垒高度、光学特性、,电光和非线性光学特性、载体运输属性等。

书籍目录:

Preface

Acknowledgments

Contents of Other Volumes

1 Diamond (C)

1.1 Structural Properties

1.1.1 Ionicity

1.1.2 Elemental Isotopic Abundance and Molecular Weight

1.1.3 Crystal Structure and Space Group

1.1.4 Lattice Constant and Its Related Parameters

1.1.5 Structural Phase Transition

1.1.6 Cleavage Plane

1.2 Thermal Properties

1.2.1 Melting Point and Its Related Parameters

1.2.2 Specific Heat

1.2.3 Debye Temperature

1.2.4 Thermal Expansion Coefficient

1.2.5 Thermal Conductivity and Diffusivity

1.3 Elastic Properties

1.3.1 Elastic Constant

1.3.2 Third—Order Elastic Constant

1.3.3 Young's Modulus, Poisson's Ratio, and Similar

1.3.4 Microhardness

1.3.5 Sound Velocity

1.4 Phonons and Lattice Vibronic Properties

1.4.1 Phonon Dispersion Relation

1.4.2 Phonon Frequency

1.4.3 Mode Gruneisen Parameter

1.4.4 Phonon Deformation Potential

1.5 Collective Effects and Related Properties

1.5.1 Piezoelectric Constant

1.5.2 Frohlich Coupling Constant

1.6 Energy—Band Structure: Energy—Band Gaps

1.6.1 Basic Properties

1.6.2 E0—Gap Region

1.6.3 Higher—Lying Direct Gap

1.6.4 Lowest Indirect Gap

1.6.5 Conduction—Valley Energy Separation

1.6.6 Direct—Indirect—Gap Transition Pressure

1.7 Energy—Band Structure: Electron and Hole Effective Masses

1.7.1 Electron Effective Mass: Γ Valley

1.7.2 Electron Effective Mass: Satellite Valley

1.7.3 Hole Effective Mass

1.8 Electronic Deformation Potential

1.8.1 Intravalley Deformation Potential: Γ Point

1.8.2 Intravalley Deformation Potential: High—Symmetry Points

1.8.3 Intervalley Deformation Potential

1.9 Electron Affinity and Schottky Barrier Height

1.9.1 Electron Affinity

1.9.2 Schottky Barrier Height

1.10 Optical Properties

1.10.1 Summary of Optical Dispersion Relations

1.10.2 The Reststrahlen Region

1.10.3 At or Near the Fundamental Absorption Edge

1.10.4 The Interband Transition Region

1.10.5 Free—Carrier Absorption and Related Phenomena

1.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties

1.11.1 Elastooptic Effect

1.11.2 Linear Electrooptic Constant

1.11.3 Quadratic Electrooptic Constant

1.11.4 Franz—Keldysh Effect

1.11.5 Nonlinear Optical Constant

1.12 Carrier Transport Properties

1.12.1 Low—Field Mobility: Electrons

1.12.2 Low—Field Mobility: Holes

1.12.3 High—Field Transport: Electrons

1.12.4 High—Field Transport: Holes

1.12.5 Minority—Carrier Transport: Electrons in ρ—Type Materials

1.12.6 Minority—Carrier Transport: Holes in n—Type Materials

1.12.7 Impact Ionization Coefficient

2 Silicon (Si)

2.1 Structural Properties

2.1.1 Ionicity

2.1.2 Elemental Isotopic Abundance and Molecular Weight

2.1.3 Crystal Structure and Space Group

2.1.4 Lattice Constant and Its Related Parameters

2.1.5 Structural Phase Transition

2.1.6 Cleavage Plane

2.2 Thermal Properties

2.2.1 Melting Point and Its Related Parameters

2.2.2 Specific Heat

2.2.3 Debye Temperature

2.2.4 Thermal Expansion Coefficient

2.2.5 Thermal Conductivity and Diffusivity

2.3 Elastic Properties

2.3.1 Elastic Constant

2.3.2 Third—Order Elastic Constant

2.3.3 Young's Modulus, Poisson's Ratio, and Similar

2.3.4 Microhardness

2.3.5 Sound Velocity

2.4 Phonons and Lattice Vibronic Properties

2.4.1 Phonon Dispersion Relation

2.4.2 Phonon Frequency

2.4.3 Mode Gruneisen Parameter

2.4.4 Phonon Deformation Potential

2.5 Collective Effects and Related Properties

2.5.1 Piezoelectric Constant

2.5.2 Frohlich Coupling Constant

2.6 Energy—Band Structure: Energy—Band Gaps

2.6.1 Basic Properties

2.6.2 E0—Gap Region

2.6.3 Higher—Lying Direct Gap

2.6.4 Lowest Indirect Gap

2.6.5 Conduction—Valley Energy Separation

2.6.6 Direct—Indirect—Gap Transition Pressure

2.7 Energy—Band Structure: Electron and Hole Effective Masses

2.7.1 Electron Effective Mass: Γ Valley

2.7.2 Electron Effective Mass: Satellite Valley

2.7.3 Hole Effective Mass

2.8 Electronic Deformation Potential

2.8.1 Intravalley Deformation Potential: Γ Point

2.8.2 Intravalley Deformation Potential: High—Symmetry Points

2.8.3 Intervalley Deformation Potential

2.9 Electron Affinity and Schottky Barrier Height

2.9.1 Electron Affinity

2.9.2 Schottky Barrier Height

2.10 Optical Properties

2.10.1 Summary of Optical Dispersion Relations

2.10.2 The Reststrahlen Region

2.10.3 At or Near the Fundamental Absorption Edge

2.10.4 The Interband Transition Region

2.10.5 Free—Carrier Absorption and Related Phenomena

2.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties

2.11.1 Elastooptic Effect

2.11.2 Linear Electrooptic Constant

2.11.3 Quadratic Electrooptic Constant

2.11.4 Franz—Keldysh Effect

2.11.5 Nonlinear Optical Constant

2.12 Carrier Transport Properties

2.12.1 Low—Field Mobility: Electrons

2.12.2 Low—Field Mobility: Holes

2.12.3 High—Field Transport: Electrons

2.12.4 High—Field Transport: Holes

2.12.5 Minority—Carrier Transport: Electrons in p—Type Materials

2.12.6 Minority—Carrier Transport: Holes in n—Type Materials

2.12.7 Impact Ionization Coefficient

3 Germanium (C)

3.1 Structural Properties

3.1.1 Ionicity

3.1.2 Elemental Isotopic Abundance and Molecular Weight

3.1.3 Crystal Structure and Space Group

3.1.4 Lattice Constant and Its Related Parameters

3.1.5 Structural Phase Transition

3.1.6 Cleavage Plane

3.2 Thermal Properties

3.2.1 Melting Point and Its Related Parameters

3.2.2 Specific Heat

3.2.3 Debye Temperature

3.2.4 Thermal Expansion Coefficient

3.2.5 Thermal Conductivity and Diffusivity

3.3 Elastic Properties

3.3,1 Elastic Constant

3.3.2 Third—Order Elastic Constant

3.3.3 Young's Modulus, Poisson's Ratio, and Similar

3.3.4 Microhardness

3.3.5 Sound Velocity

3.4 Phonons and Lattice Vibronic Properties

3.4.1 Phonon Dispersion Relation

3.4.2 Phonon Frequency

3.4.3 Mode Gruneisen Parameter

3.4.4 Phonon Deformation Potential

3.5 Collective Effects and Related Properties

3.5.1 Piezoelectric Constant

3.5.2 Frohlich Coupling Constant

3.6 Energy—Band Structure: Energy—Band Gaps

3.6.1 Basic Properties

3.6.2 Eo—Gap Region

3.6.3 Higher—Lying Direct Gap

3.6.4 Lowest Indirect Gap

3.6.5 Conduction—Valley Energy Separation

3.6.6 Direct—Indirect—Gap Transition Pressure

3.7 Energy—Band Structure: Electron and Hole Effective Masses

3.7.1 Electron Effective Mass: F Valiey

3.7.2 Electron Effective Mass: Satellite Valley

3.7.3 Hole Effective Mass

3.8 Electronic Deformation Potential

3.8.1 Intravalley Deformation Potential: Γ Point

3.8.2 Intravalley Deformation Potential: High—Symmetry Points

3.8.3 Intervalley Deformation Potential

3.9 Electron Affinity and Schottky Barrier Height

3.9.1 Electron Affinity

3.9.2 Schottky Barrier Height

3.10 Optical Properties

3.10.1 Summary of Optical Dispersion Relations

3.10.2 The Reststrahlen Region

3.10.3 At or Near the Fundamental Absorption Edge

3.10.4 The Interband Transition Region

3.10.5 Free—Carrier Absorption and Related Phenomena

3.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties

3.11.1 Elastooptic Effect

3.11.2 Linear Electrooptic Constant

3.11.3 Quadratic Electrooptic Constant

3.11.4 Franz—Keldysh Effect

3.11.5 Nonlinear Optical Constant

3.12 Carrier Transport Properties

3.12.1 Low—Field Mobility: Electrons

3.12.2 Low—Field Mobility: Holes

3.12.3 High—Field Transport: Electrons

3.12.4 High—Field Transport: Holes

3.12.5 Minority—Carrier Transport: Electrons in p—Type Materials

3.12.6 Minority—Carrier Transport: Holes in n—Type Materials

3.12.7 Impact Ionization Coefficient

4 Gray Tin (a—Sn)

4.1 Structural Properties

4.1.1 lonicity

4.1.2 Elemental Isotopic Abundance and Molecular Weight

4.1.3 Crystal Structure and Space Group

4.1.4 Lattice Constant and Its Related Parameters

4.1.5 Structural Phase Transition

4.1.6 Cleavage Plane

4.2 Thermal Properties

4.2.1 Melting Point and Its Related Parameters

4.2.2 Specific Heat

4.2.3 Debye Temperature

4.2.4 Thermal Expansion Coefficient

4.2.5 Thermal Conductivity and Diffusivity

4.3 Elastic Properties

4.3.1 Elastic Constant

4.3.2 Third—Order Elastic Constant

4.3.3 Young's Modulus, Poisson's Ratio, and Similar

4.3.4 Microhardness

4.3.5 Sound Velocity

4.4 Phonons and Lattice Vibronic Properties

4.4.1 Phonon Dispersion Relation

4.4.2 Phonon Frequency

4.4.3 Mode Gruneisen Parameter

4.4.4 Phonon Deformation Potential

4.5 Collective Effects and Related Properties

4.5.1 Piezoelectric Constant

4.5.2 Frohlich Coupling Constant

4.6 Energy—Band Structure: Energy—Band Gaps

4.6.1 Basic Properties

4.6.2 Eo—Gap Region

4.6.3 Higher—Lying Direct Gap

4.6.4 Lowest Indirect Gap

4.6.5 Conduction—Valley Energy Separation

4.6.6 Direct—Indirect—Gap Transition Pressure

4.7 Energy—Band Structure: Electron and Hole Effective Masses

4.7.1 Electron Effective Mass: Γ Valley

4.7.2 Electron Effective Mass: Satellite Valley

4.7.3 Hole Effective Mass

4.8 Electronic Deformation Potential

4.8.1 Intravalley Deformation Potential: Γ Point

4.8.2 Intravalley Deformation Potential: High—Symmetry Points

4.8.3 Intervalley Deformation Potential

4.9 Electron Affinity and Schottky Barrier Height

4.9.1 Electron Affinity

4.9.2 Schottky Barrier Height

4.10 Optical Properties

4.10.1 Summary of Optical Dispersion Relations

4.10.2 The Reststrahlen Region

4.10.3 At or Near the Fundamental Absorption Edge

4.10.4 The Interband Transition Region

4.10.5 Free—Carrier Absorption and Related Phenomena

4.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties

4.11.1 Elastooptic Effect

4.11.2 Linear Electrooptic Constant

4.11.3 Quadratic Electrooptic Constant

4.11.4 Franz—Keldysh Effect

4.11.5 Nonlinear Optical Constant

4.12 Carrier Transport Properties

4.12.1 Low—Field Mobility: Electrons

4.12.2 Low—Field Mobility: Holes

4.12.3 High—Field Transport: Electrons

4.12.4 High—Field Transport: Holes

4.12.5 Minority—Carrier Transport: Electrons in p—Type Materials

4.12.6 Minority—Carrier Transport: Holes in n—Type Materials

4.12.7 Impact Ionization Coefficient

……

5 Cubic Silicon Carbide (3C—SiC)

6 Hexagonal Silicon Carbide (2H—, 4H—, 6H—SiC, etc.)

7 Rhombohedral Silicon Carbide (15R—, 21R—, 24R—SiC, etc.)

书籍规格:

书籍详细信息
书名半导体物理性能手册站内查询相似图书
9787560345130
如需购买下载《半导体物理性能手册》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地哈尔滨出版单位哈尔滨工业大学出版社
版次1版印次1
定价(元)180.0语种英文
尺寸23 × 19装帧平装
页数印数

书籍信息归属:

半导体物理性能手册是哈尔滨工业大学出版社于2014.1出版的中图分类号为 TN304-62 的主题关于 半导体材料-物理性能-手册-英文 的书籍。