出版社:清华大学出版社
年代:2016
定价:49.0
本书系统整理了金融计量学已有的基本理论体系,补充了现有同类教材中的不足和缺陷,并吸纳了最新的研究成果,满足现实金融实践的需要。使学生能掌握最新的有关理论知识,赶上金融实践的需要。
第1章金融计量学介绍
1.1金融计量学的含义及建模步骤
1.1.1金融计量学的含义
1.1.2金融计量建模步骤
1.2金融数据的主要类型、特点和来源
1.2.1金融数据的主要类型
1.2.2金融数据的特点
1.2.3金融数据的来源
1.3收益率的计算
1.3.1单期收益率
1.3.2多期收益率
1.4常用的统计学与概率知识
1.4.1随机变量
1.4.2常用概率分布
1.4.3假设检验
1.4.4三个常用的检验方法
1.5常用金融计量软件介绍
1.5.1常用金融计量软件简介
1.5.2EViews软件使用介绍及操作步骤简介
参考文献
第2章经典回归模型及其应用
2.1一元回归模型及其应用
2.1.1经典一元线性回归模型
2.1.2一元线性回归模型的基本假设
2.1.3普通最小二乘法(参数估计)
2.1.4最小二乘估计量的性质
2.1.5案例分析
2.2多元回归模型及其应用
2.2.1多元线性回归模型
2.2.2多元线性回归模型的基本假设
2.2.3普通最小二乘法(OLS)
2.2.4普通最小二乘法的性质
2.3回归模型的检验
2.3.1拟合优度和R2
2.3.2变量的显著性检验与t检验
2.3.3方程显著性与F检验
2.3.4自相关检验与DW
2.3.5AIC准则和Schwarz准则
2.3.6残差检验与JB统计量
2.3.7参数的置信区间
2.4案例分析
2.4.1一元回归案例分析
2.4.2多元回归案例分析
参考文献
第3章非典型性回归模型及其应用
3.1非线性模型转化为线性模型
3.1.1模型的类型与变换
3.1.2案例分析
3.2异方差性
3.2.1异方差介绍及产生原因
3.2.2异方差的后果
3.2.3异方差检验
3.2.4异方差的修正
3.2.5案例分析
3.3自相关
3.3.1自相关的概念及产生的原因
3.3.2自相关的后果
3.3.3序列相关性的识别和检验
3.3.4自相关修正
3.3.5案例分析
3.4多重共线性
3.4.1多重共线性的概念
3.4.2多重共线性产生的原因
3.4.3多重共线性的后果
3.4.4多重共线性检验
3.4.5多重共线性的修正
3.4.6案例分析
3.5虚拟变量模型
3.5.1虚拟变量的引入
3.5.2模型回归的结构稳定性检验
3.5.3案例分析(虚拟变量法和邹氏检验法)
3.6预测
3.6.1预测的概念
3.6.2预测原理
3.6.3预测的类型
3.6.4预测的评价标准
参考文献
第4章一元时间序列分析方法
4.1时间序列的相关概念
4.1.1平稳性
4.1.2自协方差
4.1.3白噪声过程
4.1.4Q统计量
4.2平稳时间序列模型
4.2.1自回归模型
4.2.2移动平均模型
4.2.3自回归移动平均模型
4.2.4案例分析
4.3非平稳的时间序列分析
4.3.1两种类型的非平稳序列
4.3.2非平稳序列的单位根检验
4.3.3ARIMA模型
4.4非平稳及长记忆时间序列ARFIMA模型
4.4.1非平稳时间序列及其分类
4.4.2长记忆时间序列及特点
4.4.3长记忆时间序列模型
参考文献
第5章向量自回归模型(VAR)
5.1VAR模型介绍
5.1.1VAR模型基本概念
5.1.2VAR模型的平稳性条件
5.1.3VAR(p)与VAR(1)转化
5.1.4向量自协方差与自相关函数
5.2VAR模型估计方法与设定
5.2.1VAR模型的估计方法
5.2.2VAR模型的设定
5.3格兰杰因果关系检验
5.4脉冲响应函数与方差分解
5.4.1VAR模型与脉冲响应函数
5.4.2VAR模型与方差分解
5.4.3案例分析
5.5结构VAR(SVAR)模型
5.5.1两变量的SVAR模型
5.5.2多变量的SVAR模型
参考文献
第6章协整和误差修正模型
6.1协整与协整检验
6.1.1协整的概念
6.1.2协整检验方法
6.2误差修正模型(ECM)
6.2.1误差修正模型的含义
6.2.2误差修正模型的构造
6.2.3误差修正模型的估计
6.2.4案例分析
6.3Johansen协整检验方法
6.3.1Johansen协整检验的基本说明
6.3.2Johansen协整检验的案例分析
6.4向量误差修正模型(VECM)
参考文献
第7章GARCH 模型分析与应用
7.1金融时间序列异方差特征
7.2ARCH模型
7.2.1ARCH模型的构造
7.2.2ARCH模型的性质
7.3GARCH模型
7.3.1GARCH模型的构造
7.3.2GARCH模型的性质
7.3.3GARCH模型的检验与估计
7.4GARCH类模型的扩展
7.4.1IGARCH模型
7.4.2GARCHM模型
7.4.3TGARCH模型
7.4.4EGARCH模型
7.4.5PGARCH模型
7.4.6CGARCH模型
7.4.7FIGARCH模型
7.5GARCH类模型应用
7.5.1案例1: 美元对人民币汇率建模研究
7.5.2案例2: 上证综指波动建模
7.6向量GARCH模型
7.6.1向量ARCH模型
7.6.2向量GARCH模型
7.6.3对角向量GARCH模型
7.6.4BEKK模型
7.6.5常相关向量GARCH模型
7.6.6K因子向量ARCH模型
7.6.7向量FIGARCH模型
7.6.8几种向量GARCH模型的比较
7.6.9二元BEKKGARCH模型实证分析
7.7随机波动模型(SV)
7.7.1SV模型
7.7.2向量SV模型
7.7.3一元SV模型实证分析
7.7.4向量SV模型实证分析
参考文献
第8章资产定价模型的实证研究
8.1CAPM理论
8.2CAPM实证检验方法
8.2.1布莱克詹森斯科尔斯(BlackJensonScholes)方法
8.2.2法马麦克白(FamaMacBeth)方法
8.3中国股市CAPM实证检验
8.3.1根据β值分组对CAPM的时间序列检验
8.3.2根据β值分组对CAPM的横截面检验
8.4三因素资本资产定价模型及其实证检验
8.4.1三因素资本资产定价模型
8.4.2三因素模型在上海股票市场的实证检验
参考文献
第9章有效市场假说与事件研究法
9.1有效市场假说的主要观点
9.1.1有效市场假说
9.1.2市场有效性的三种状态
9.1.3有效市场假说的实践意义
9.1.4随机游走的设定
9.2有效市场假说的实证检验
9.2.1弱式有效市场假说检验方法
9.2.2半强式有效市场假说的检验
9.2.3强式有效市场假说的检验
9.2.4中国证券市场有效性实证检验回顾
9.2.5案例分析: 中国股市有效性检验
9.3事件研究法介绍
9.3.1事件研究概述
9.3.2事件研究法的步骤
9.4事件研究法案例分析
9.4.1案例1分析
9.4.2案例2分析
参考文献
第10章风险度量方法及应用
10.1金融市场风险概述
10.1.1风险分类
10.1.2金融风险管理的程序
10.1.3风险管理的意义
10.2金融风险度量方法
10.2.1VaR方法
10.2.2CVaR方法和ES方法
10.2.3案例分析
参考文献
第11章金融高频数据分析及应用
11.1金融高频数据特征分析
11.1.1金融高频数据概念
11.1.2金融高频数据的主要特征
11.2波动率建模及应用
11.2.1波动率度量方法
11.2.2跳跃检验方法
11.2.3波动率模型
11.2.4模型评价
11.2.5案例分析
参考文献
附录: 统计分布表
金融计量学是一门新型的金融数据处理课程,汇总了时间序列等数据处理方法在金融经济方面的理论、方法和应用。本书是作者在多年金融计量方面的教学和科研基础上编写而成的,将最新的有关研究成果编入本书,课程体系更加完善。本书体现了较强的理论深度和学术前沿,同时针对我国金融市场进行了大量实证研究,具有理论和实践指导意义。本书可作为数量经济、金融等专业高年级本科生和相关专业的研究生教材,亦可作为相关领域研究人员的参考书。
内容适中,结构合理,案例生动,配套课件。
书籍详细信息 | |||
书名 | 金融计量学站内查询相似图书 | ||
丛书名 | 数量经济学系列丛书 | ||
9787302441748 如需购买下载《金融计量学》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 清华大学出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 49.0 | 语种 | 简体中文 |
尺寸 | 26 × 19 | 装帧 | 平装 |
页数 | 印数 | 3000 |