曲面几何学

曲面几何学

(澳) 史迪威 (Stillwell,J.) , 著

出版社:世界图书出版公司北京公司

年代:2010

定价:28.0

书籍简介:

本书揭示了几何和拓扑之间的相互关系,为广大读者介绍了现代几何的基本概况。书的开始介绍了三种简单的面,欧几里得面、球面和双曲平面。运用等距同构群的有效机理,并且将这些原理延伸到常曲率的所有可以用合适的同构方法获得的曲面。

书籍目录:

Preface

Chapter 1.The Euclidean Plane

1.1 Approaches to Euclidean Geometry

1.2 Isometries

1.3 Rotations and Reflections

1.4 The Three Reflections Theorem

1.5 Orientation-Reversing Isometries

1.6 Distinctive Features of Euclidean Geometry

1.7 Discussion

Chapter 2.Euclidean Surfaces

2.1 Euclid on Manifolds

2.2 The Cylinder

2.3 The Twisted Cylinder

2.4 The Torus and the Klein Bottle

2.5 Quotient Surfaces

2.6 A Nondiscontinuous Group

2.7 Euclidean Surfaces

2.8 Covering a Surface by the Plane

2.9 The Covering Isometry Group

2.10 Discussion

Chapter 3.The Sphere

3.1 The Sphere S2 in R3

3.2 Rotations

3.3 Stereographic Projection

3.4 Inversion and the Complex Coordinate on the Sphere

3.5 Reflections and Rotations as Complex Functions

3.6 The Antipodal Map and the Elliptic Plane

3.7 Remarks on Groups, Spheres and Projective Spaces

3.8 The Area of a Triangle

3.9 The Regular Polyhedra

3.10 Discussion

Chapter 4.The Hyperbolic Plane

4.1 Negative Curvature and the Half-Plane

4.2 The Half-Plane Model and the Conformal Disc Model

4.3 The Three Reflections Theorem

4.4 Isometries as Complex Fnctions

4.5 Geometric Description of Isometries

4.6 Classification of Isometries

4.7 The Area of a Triangle

4.8 The Projective Disc Model

4.9 Hyperbolic Space

4.10 Discussion

Chapter 5.Hyperbolic Surfaces

5.1 Hyperbolic Surfaces and the Killing-Hopf Theorem

5.2 The Pseudosphere

5.3 The Punctured Sphere

5.4 Dense Lines on the Punctured Sphere

5.5 General Construction of Hyperbolic Surfaces from Polygons

5.6 Geometric Realization of Compact Surfaces

5.7 Completeness of Compact Geometric Surfaces

5.8 Compact Hyperbolic Surfaces

5.9 Discussion

Chapter 6.Paths and Geodesics

6.1 Topological Classification of Surfaces

6.2 Geometric Classification of Surfaces

6.3 Paths and Homotopy

6.4 Lifting Paths and Lifting Homotopies

6.5 The Fundamental Group

6.6 Generators and Relations for the Fundamental Group

6.7 Fundamental Group and Genus

6.8 Closed Geodesic Paths

6.9 Classification of Closed Geodesic Paths

6.10 Discussion

Chapter 7.Planar and Spherical TesseUations

7.1 Symmetric Tessellations

7.2 Conditions for a Polygon to Be a Fundamental Region

7.3 The Triangle Tessellations

7.4 Poincarrs Theorem for Compact Polygons

7.5 Discussion

Chapter 8.Tessellations of Compact Surfaces

8.1 Orbifolds and Desingularizations

8.2 From Desingularization to Symmetric Tessellation

8.3 Desingularizations as (Branched) Coverings

8.4 Some Methods of Desingularization

8.5 Reduction to a Permutation Problem

8.6 Solution of the Permutation Problem

8.7 Discussion

References

Index

内容摘要:

《曲面几何学》揭示了几何和拓扑之间的相互关系,为广大读者介绍了现代几何的基本概况。书的开始介绍了三种简单的面,欧几里得面、球面和双曲平面。运用等距同构群的有效机理,并且将这些原理延伸到常曲率的所有可以用合适的同构方法获得的曲面。紧接着主要是从拓扑和群论的观点出发,讲述一些欧几里得曲面和球面的分类,较为详细地讨论了一些有双曲曲面。由于常曲率曲面理论和现代数学有很大的联系,该书是一本理想的学习几何的入门教程,用最简单易行的方法介绍了曲率、群作用和覆盖面。这些理论融合了许多经典的概念,如,复分析、微分几何、拓扑、组合群论和比较热门的分形几何和弦理论。《曲面几何学》内容自成体系,在预备知识部分包括一些线性代数、微积分、基本群论和基本拓扑。

书籍规格:

书籍详细信息
书名曲面几何学站内查询相似图书
9787510005312
如需购买下载《曲面几何学》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位世界图书出版公司北京公司
版次影印本印次1
定价(元)28.0语种英文
尺寸23 × 15装帧平装
页数印数 1000

书籍信息归属:

曲面几何学是世界图书出版公司北京公司于2010.2出版的中图分类号为 O186.11 的主题关于 曲面论-英文 的书籍。