聚多糖纳米晶 : 化学及应用

聚多糖纳米晶 : 化学及应用

黄进, (加) 张荣贵 (Chang,P.R.) , 林宁, (法) 迪韦雷纳 (Dufresne,A.) , 著

出版社:化学工业出版社

年代:2015

定价:280.0

书籍简介:

《聚多糖纳米晶——化学及应用》是第一部系统介绍聚多糖纳米晶及其材料的化学性质、加工技术和应用的参考书。全书采用简明的语言、丰富的数据图表,阐明了天然资源的聚多糖纳米晶的提取、结构、性质、化学修饰、材料成型等理论知识和实践经验,总结了聚多糖纳米晶改性材料功能化、高性能化的研究思路和技术方案。

作者介绍:

黄进,博士、武汉理工大学教授、博士生导师,IUPAC、中国化学会、中国微米纳米技术学会纳米科学技术分会、中国毒理学会纳米毒理学专业委员会、中国生物材料委员会会员,先后受聘为中国科学院高级访问学者、法国Grenoble国立理工学院访问学者、华东师范大学兼职教授、武汉纺织大学客座教授,入选“教育部新世纪优秀人才支持计划”、“江苏省高层次创新创业人才引进计划”和“武汉市青年科技晨光计划”。

书籍目录:

·List of Contributors XIII

Foreword XV

Preface XVII

1 Polysaccharide Nanocrystals: Current Status and Prospects in Materi

Science

Jin Huang, Peter R. Chang, and Alain Dufresne

1.1 Introduction to Polysaccharide Nanocrystals

1.2 Current Application of Polysaccharide Nanocrystals in Material

Science

1.3 Prospects for Polysaccharide Nanocrystal-Based Materials

List of Abbreviations

References

2 Structure and Properties of Polysaccharide Nanocrystals

Fei Hu, Shiyu Fu, Jin Huang, Debbie P. Anderson, and Peter R. Chang

2.1 Introduction

2.2 Cellulose Nanocrystals

2.2.1 Preparation of Cellulose Nanocrystals

2.2.1.1 Acid Hydrolysis Extraction of Cellulose Nanocrystals

2.2.1.2 Eects of Acid Type

2.2.1.3 Eects of Pretreatment

2.2.2 Structure and Properties of Cellulose Nanocrystals

2.2.2.1 Structure and Rigidity of Cellulose Nanocrystals

2.2.2.2 Physical Properties of Cellulose Nanocrystals

2.3 Chitin Nanocrystals

2.3.1 Preparation of Chitin Nanocrystals

2.3.1.1 Extraction of Chitin Nanocrystals by Acid Hydrolysis

2.3.1.2 Extraction of Chitin Nanocrystals by TEMPO Oxidation

2.3.2 Structure and Properties of Chitin Nanocrystals

2.3.2.1 Structure and Rigidity of Chitin Nanocrystals

2.3.2.2 Properties of Chitin Nanocrystal Suspensions

2.4 Starch Nanocrystals

2.4.1 Preparation of Starch Nanocrystals

2.4.1.1 Extraction of Starch Nanocrystals by Acid Hydrolysis

2.4.1.2 Eect of Ultrasonic Treatment

2.4.1.3 Eect of Pretreatment

2.4.2 Structure and Properties of Starch Nanocrystals

2.4.2.1 Structure of Starch Nanocrystals

2.4.2.2 Properties of Starch Nanocrystal Suspensions

2.5 Conclusion and Prospects

List of Abbreviations

References

3 Surface Modication of Polysaccharide Nanocrystals

Ning Lin and Alain Dufresne

3.1 Introduction

3.2 Surface Chemistry of Polysaccharide Nanocrystals

3.2.1 Surface Hydroxyl Groups

3.2.2 Surface Groups Originating from Various Extraction Methods

3.3 Approaches and Strategies for Surface Modication

3.3.1 Purpose and Challenge of Surface Modication

3.3.2 Comparison of Dierent Approaches and Strategies of Surface Modication

3.4 Adsorption of Surfactant

3.4.1 Anionic Surfactant

3.4.2 Cationic Surfactant

3.4.3 Nonionic Surfactant

3.5 Hydrophobic Groups Resulting from Chemical Derivatization

3.5.1 Acetyl and Ester Groups with Acetylation and Esterication

3.5.2 Carboxyl Groups Resulting from TEMPO-Mediated Oxidation

3.5.3 Derivatization with Isocyanate Carboamination

3.5.4 Silyl Groups Resulting from Silylation

3.5.5 Cationic Groups Resulting from Cationization

3.6 Polymeric Chains from Physical Absorption or Chemical Grafting

3.6.1 Hydrophilic Polymer

3.6.2 Polyester

3.6.3 Polyolen

3.6.4 Block Copolymer

3.6.5 Polyurethane andWaterborne Polyurethane

3.6.6 Other Hydrophobic Polymer

3.7 Advanced Functional Groups and Modication

3.7.1 Fluorescent and Dye Molecules

3.7.2 Amino Acid and DNA

3.7.3 Self-Cross-linking of Polysaccharide Nanocrystals

3.7.4 Photobactericidal Porphyrin Molecule

3.7.5 Imidazolium Molecule

3.7.6 Cyclodextrin Molecule and Pluronic Polymer

3.8 Concluding Remarks

List of Abbreviations

References

4 Preparation of Polysaccharide Nanocrystal-Based Nanocomposites

Hou-Yong Yu, Jin Huang, Youli Chen, and Peter R. Chang

4.1 Introduction

4.2 Casting/Evaporation Processing

4.2.1 Solution Casting/Evaporation Processing

4.2.2 Solution Casting in Aqueous Medium

4.2.2.1 Dispersion Stability of Polysaccharide Nanocrystals in Aqueous

Medium

4.2.2.2 Blending with Hydrophilic Polymers

4.2.2.3 Blending with Hydrophobic Polymers

4.2.3 Solution Casting in Organic Medium

4.2.3.1 Dispersion Stability of Polysaccharide Nanocrystals in Organic Medium

4.2.3.2 Blending with Polymers in Organic Solvent

4.3 hermoprocessing Methods

4.3.1 hermoplastic Materials Modied with Polysaccharide

Nanocrystals

4.3.2 Inuence of Surface Modication of Polysaccharide Nanocrystals on

Nanocompositehermoprocessing

4.4 Preparation of Nanobers by Electrospinning Technology

4.4.1 Electrospinning Technology

4.4.1.1 Concepts

4.4.1.2 Formation Process of Nanobers

4.4.1.3 Basic Electrospinning Parameters and Devices

4.4.1.4 Newly Emerging Electrospinning Techniques

4.4.2 Nanocomposite Nanobers Filled with Polysaccharide

Nanocrystals

4.4.2.1 Electrospun Nanobers in Aqueous Medium

4.4.2.2 Electrospun Nanobers in Non-aqueous Medium

4.5 Sol-Gel Method

4.5.1 Concepts of Sol-Gel Process

4.5.2 Polysaccharide Nanocrystal-Based or -Derived Nanocomposites

Prepared by Sol-GelMethod

4.5.3 Chiral Nanocomposites Using Cellulose Nanocrystal Template

4.5.3.1 Inorganic Chiral Materials Based on Cellulose Nanocrystal

Template

4.5.3.2 Chiral Porous Materials

4.5.3.3 Chiral Porous Carbon Materials

4.5.3.4 Metal Nanoparticle-Decorated Chiral Nematic Materials

4.6 Self-Assembly Method

4.6.1 Overview of Self-Assembly Method

4.6.2 Self-Assembly Method Toward Polysaccharide

Nanocrystal-Modied Materials

4.6.2.1 Self-Assembly of Polysaccharide Nanocrystals in Aqueous

Medium

4.6.2.2 Self-Assembly of Polysaccharide Nanocrystals in Organic

Medium

4.6.2.3 Self-Assembly of Polysaccharide Nanocrystals in Solid Film

4.6.3 Polysaccharide Nanocrystal-Modied Materials Prepared by LBL

Method

4.7 Other Methods and Prospects

List of Abbreviations

References

5 Polysaccharide Nanocrystal-Reinforced Nanocomposites

Hanieh Kargarzadeh and Ishak Ahmad

5.1 Introduction

5.2 Rubber-Based Nanocomposites

5.3 Polyolen-Based Nanocomposites

5.4 Polyurethane andWaterborne Polyurethane-Based

Nanocomposites

5.5 Polyester-Based Nanocomposites

5.6 Starch-Based Nanocomposites

5.7 Protein-Based Nanocomposites

5.8 Concluding Remarks

List of Abbreviations

References

6 Polysaccharide Nanocrystals-Based Materials for Advanced

Applications

Ning Lin, Jin Huang, and Alain Dufresne

6.1 Introduction

6.2 Surface Characteristics Induced Functional Nanomaterials

6.2.1 Active Groups

6.2.1.1 Importing Functional Groups or Molecules

6.2.1.2 Template for Synthesizing Inorganic Nanoparticles

6.2.2 Surface Charges and Hydrophilicity

6.2.2.1 Emulsion Nanostabilizer

6.2.2.2 High-Eciency Adsorption

6.2.2.3 Permselective Membrane

6.2.3 Nanoscale and High Surface Area

6.2.3.1 Surface Cell Cultivation

6.2.3.2 Water Decontamination

6.3 Nano-Reinforcing Eects in Functional Nanomaterials

6.3.1 Soft Matter

6.3.1.1 Hydrogel

6.3.1.2 Sponge, Foam, Aerogel, and Tissue-Engineering Nanosca?old

6.3.2 Special Mechanical Materials

6.3.3 Self-Healable and Shape-Memory Materials

6.3.4 Polymeric Electrolytes and Battery

6.3.5 Semi-conducting Material

6.4 Optical Materials Derived from Liquid Crystalline Property

6.5 Special Films and Systems Ascribed to Barrier Property

6.5.1 Drug Delivery - Barrier for Drug Molecules

6.5.2 Barrier Nanocomposites - Barrier forWater and Oxygen

6.6 Other Functional Applications

6.7 Concluding Remarks

List of Abbreviations

References

7 Characterization of Polysaccharide Nanocrystal-Based Materials

Alain Dufresne and Ning Lin

7.1 Introduction

7.2 Mechanical Properties of Polysaccharide Nanocrystals

7.2.1 Intrinsic Mechanical Properties of Polysaccharide

Nanocrystals

7.2.2 Mechanical Properties of Polysaccharide Nanocrystal Films

7.3 Dispersion of Polysaccharide Nanocrystals

7.3.1 Observation of Polysaccharide Nanocrystals in Matrix

7.3.2 hree-Dimensional Network of Polysaccharide Nanocrystals

7.4 Mechanical Properties of Polysaccharide Nanocrystal-Based

Materials

7.4.1 Inuence of the Morphology and Dimensions of the

Nanocrystals

7.4.2 Inuence of the Processing Method

7.5 Polysaccharide Nanocrystal/Matrix Interfacial Interactions

7.6 hermal Properties of Polysaccharide Nanocrystal-Based

Materials

7.6.1 hermal Properties of Polysaccharide Nanocrystals

7.6.2 Glass Transition of Polysaccharide Nanocrystal-Based

Nanocomposites

7.6.3 Melting/Crystallization Temperature of Polysaccharide

Nanocrystal-Based Nanocomposites

7.6.4 hermal Stability of Polysaccharide Nanocrystal-Based

Nanocomposites

7.7 Barrier Properties of Polysaccharide Nanocrystal-Based

Materials

7.7.1 Barrier Properties of Polysaccharide Nanocrystal Films

7.7.2 Swelling and Sorption Properties of Polysaccharide

Nanocrystal-Based Nanocomposites

7.7.3 Water Vapor Transfer and Permeability of Polysaccharide

Nanocrystal-Based Nanocomposites

7.7.4 Gas Permeability of Polysaccharide Nanocrystal-Based

Nanocomposites

7.8 Concluding Remarks

List of Abbreviations

References

Index

内容摘要:

《先进功能材料丛书·聚多糖纳米晶:化学与应用》采用简明的语言、丰富的数据图表,阐明了来自天然生物质资源的聚多糖纳米晶的提取、结构、性质、化学修饰、材料制备等方面的理论知识和实践经验,总结了聚多糖纳米晶改性材料功能化、高性能化的研究思路和技术方案。不仅包含作者在过去十年中以保护环境和降低石油消耗为目标,围绕可再生、可生物降解的聚多糖纳米晶发展成为高性能材料及功能材料的研究工作的凝练,同时涵盖了国内外同行的优秀研究成果。
  《先进功能材料丛书·聚多糖纳米晶:化学与应用》主要包括纤维素纳米晶、甲壳素纳米晶及淀粉纳米晶的制备、化学和物理改性、纳米复合材料和功能材料构建的相关理论和技术等内容,并且对聚多糖纳米晶的理论研究体系建立、应用拓展及发展方向等进行了展望。
  《先进功能材料丛书·聚多糖纳米晶:化学与应用》可供生物质化学与化工、高分子科学、环境科学、材料科学、农业化学、纳米科学与技术等相关专业的研究生学习使用,也可作为相关科研工作和工程技术人员的参考书。

编辑推荐:

适读人群 :本书可供高分子科学、环境科学、材料科学、农业化学等相关专业的研究生学习使用,也可作为相关科学研工作者和工程技术人员的参考书。

  聚多糖纳米晶是以保护环境和降低石油消耗为目标的、生物可再生、可降解的新型功能材料。
  第一部系统介绍聚多糖纳米晶及其材料的化学性质、加工技术和应用的参考书。
  《先进功能材料丛书·聚多糖纳米晶:化学与应用》是作者在过去十年中研究工作的凝炼。
  《先进功能材料丛书·聚多糖纳米晶:化学与应用》语言简明、数据图表丰富。
  《先进功能材料丛书·聚多糖纳米晶:化学与应用》列举了大量最新研究成果作为示例,有助于读者的理解、记忆和灵活运用。

书籍规格:

书籍详细信息
书名聚多糖纳米晶 : 化学及应用站内查询相似图书
9787122229847
如需购买下载《聚多糖纳米晶 : 化学及应用》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位化学工业出版社
版次1版印次1
定价(元)280.0语种英文
尺寸24 × 17装帧精装
页数印数

书籍信息归属:

聚多糖纳米晶 : 化学及应用是化学工业出版社于2015.3出版的中图分类号为 TB383 的主题关于 聚多糖-纳米材料 的书籍。