出版社:电子工业出版社
年代:2010
定价:98.0
统计学是一门工具性学科,在众多的学科领域有着广泛的应用。本书将统计学的概念与方法应用于商务领域,从应用层面对统计学的基本方法进行了系统的讲解。
Part I Exploring and Collecting Data
Chapter 1 Statistics and Variation
1.1 So, What Is Statistics?
1.2 How Will This Book Help?
Chapter 2 Data 9
2.1 What Are Data?
2.2 Variable Types
2.3 Where, How, and When
Mini Case Study Project: Credit Card Bank
Chapter 3 Surveys and Sampling
3.1 Three Ideas of Sampling
3.2 A Census—Does It Make Sense?
3.3 Populations and Parameters
3.4 Simple Random Sample (SRS)
3.5 Other Sample Designs
3.6 Defining the Population
3.7 The Valid Survey
Mini Case Study Projects: Market Survey Research
The GfK Roper Reports Worldwide Survey
Chapter 4 Displaying and Describing Categorical Data
4.1 The Three Rules of Data Analysis
4.2 Frequency Tables
4.3 Charts
4.4 Contingency Tables
Mini Case Study Project: KEEN Footwear
Chapter 5 Randomness and Probability 85
5.1 Random Phenomena and Probability
5.2 The Nonexistent Law of Averages
5.3 Different Types of Probability
5.4 Probability Rules
5.5 Joint Probability and Contingency Tables
5.6 Conditional Probability
5.7 Constructing Contingency Tables
Mini Case Study Project: Market Segmentation 103
Chapter 6 Displaying and Describing Quantitative Data
6.1 Displaying Distributions
6.2 Shape
6.3 Center
6.4 Spread of the Distribution
6.5 Shape, Center, and Spread—A Summary
6.6 Five-Number Summary and Boxplots
6.7 Comparing Groups
6.8 Identifying Outliers
6.9 Standardizing
6.10 Time Series Plots
*6.11 Transforming Skewed Data
Mini Case Study Projects: Hotel Occupancy Rates 143,
Value and Growth Stock Returns 143
Part II Understanding Data and Distributions 157
Chapter 7 Scatterplots, Association, and Correlation 159
7.1 Looking at Scatterplots
7.2 Assigning Roles to Variables in Scatterplots
7.3 Understanding Correlation
*7.4 Straightening Scatterplots
7.5 Lurking Variables and Causation
Mini Case Study Projects: *Fuel Efficiency 181, The U.S. Economy and Home Depot Stock Prices
Chapter 8 Linear Regression 193
8.1 The Linear Model
8.2 Correlation and the Line
8.3 Regression to the Mean
8.4 Checking the Model
8.5 Learning More from the Residuals
8.6 Variation in the Model and R2
8.7 Reality Check: Is the Regression Reasonable?
Mini Case Study Projects: Cost of Living 213, Mutual Funds
Chapter 9 Sampling Distributions and the Normal Model 223
9.1 Modeling the Distribution of Sample Proportions
9.2 Simulations
9.3 The Normal Distribution
9.4 Practice with Normal Distribution Calculations
9.5 The Sampling Distribution for Proportions
9.6 Assumptions and Conditions
9.7 The Central Limit Theorem—The Fundamental Theorem of Statistics
9.8 The Sampling Distribution of the Mean
9.9 Sample
Size—Diminishing Returns
9.10 How Sampling Distribution Models Work
Mini Case Study Project: Real Estate Simulation 247
Chapter 10 Confidence Intervals for Proportions 255
10.1 A Confidence Interval
10.2 Margin of Error: Certainty vs. Precision
10.3 Critical Values
10.4 Assumptions and Conditions
*10.5 A Confidence Interval for Small Samples
10.6 Choosing the Sample Size
Mini Case Study Projects: Investment 272,
Forecasting Demand 272
Chapter 11 Testing Hypotheses about Proportions 279
11.1 Hypotheses
11.2 A Trial as a Hypothesis Test
11.3 P-values
11.4 The Reasoning of Hypothesis Testing
11.5 Alternative Hypotheses
11.6 Alpha Levels and Significance
11.7 Critical Values
11.8 Confidence Intervals and Hypothesis Tests
11.9 Two Types of Errors
*11.10 Power
Mini Case Study Projects: Metal Production 305,
Loyalty Program 305
Chapter 12 Confidence Intervals and Hypothesis Tests for Means 313
12.1 The Sampling Distribution for the Mean
12.2 A Confidence Interval for Means
12.3 Assumptions and Conditions
12.4 Cautions About Interpreting Confidence Intervals
12.5 One-Sample t-Test
12.6 Sample Size
*12.7 Degrees of Freedom—Why n – 1?
Mini Case Study Projects: Real Estate 333, Donor Profiles 333
Chapter 13 Comparing Two Means 343
13.1 Testing Differences Between Two Means
13.2 The Two-Sample t-Test
13.3 Assumptions and Conditions
13.4 A Confidence Interval for the Difference Between Two Means
13.5 The Pooled t-Test
*13.6 Tukey’s Quick Test
Mini Case Study Project: Real Estate 364
Chapter 14 Paired Samples and Blocks 375
14.1 Paired Data
14.2 Assumptions and Conditions
14.3 The Paired t-Test
14.4 How the Paired t-Test Works
Mini Case Study Projects: A Taste Test (Data Collection and Analysis) 389, Consumer Spending Patterns (Data Analysis) 389
Chapter 15 Inference for Counts: Chi-Square Tests 401
15.1 Goodness-of-Fit Tests
15.2 Interpreting Chi-Square Values
15.3 Examining the Residuals
15.4 The Chi-Square Test of Homogeneity
15.5 Comparing Two Proportions
15.6 Chi-Square Test of Independence
Mini Case Study Projects: Health Insurance 424,
Loyalty Program 424
Part III Exploring Relationships Among Variables 435
Chapter 16 Inference for Regression 437
16.1 The Population and the Sample
16.2 Assumptions and Conditions
16.3 The Standard Error of the Slope
16.4 A Test for the Regression Slope
16.5 A Hypothesis Test for Correlation
16.6 Standard Errors for Predicted Values
16.7 Using Confidence and Prediction Intervals
Mini Case Study Projects: Frozen Pizza 461,
Global Warming? 461
Chapter 17 Understanding Residuals 473
17.1 Examining Residuals for Groups
17.2 Extrapolation and Prediction
17.3 Unusual and Extraordinary Observations
17.4 Working with Summary Values
17.5 Autocorrelation
17.6 Linearity
17.7 Transforming (Re-expressing) Data
17.8 The Ladder of Powers
Mini Case Study Projects: Gross Domestic Product 497,
Energy Sources 498
Chapter 18 Multiple Regression 509
18.1 The Multiple Regression Model
18.2 Interpreting Multiple Regression Coefficients
18.3 Assumptions and Conditions for the Multiple Regression Model
18.4 Testing the Multiple Regression Model
18.5 Adjusted R2, and the F-statistic
*18.6 The Logistic Regression Model
Mini Case Study Project: Golf Success 536
Chapter 19 Building Multiple Regression Models 547
19.1 Indicator (or Dummy) Variables
19.2 Adjusting for Different Slopes—Interaction Terms
19.3 Multiple Regression Diagnostics
19.4 Building Regression Models
19.5 Collinearity
19.6 Quadratic Terms
Mini Case Study Project: Paralyzed Veterans of America 577
Chapter 20 Time Series Analysis 589
20.1 What Is a Time Series?
20.2 Components of a Time Series
20.3 Smoothing Methods
20.4 Simple Moving Average Methods
20.5 Weighted Moving Averages
20.6 Exponential Smoothing Methods
20.7 Summarizing Forecast Error
20.8 Autoregressive Models
20.9 Random Walks
20.10 Multiple Regression-based Models
20.11 Additive and Multiplicative Models
20.12 Cyclical and Irregular Components
20.13 Forecasting with Regressionbased Models
20.14 Choosing a Time Series Forecasting Method
20.15 Interpreting Time Series Models: The Whole Foods Data Revisited
Mini Case Study Projects: Intel Corporation 624,
Tiffany & Co. 624
Part IV Building Models for Decision Making 637
Chapter 21 Random Variables and Probability Models 639
21.1 Expected Value of a Random Variable
21.2 Standard Deviation of a Random Variable
21.3 Properties of Expected Values and Variances
21.4 Discrete Probability Models
21.5 Continuous Random Variables
Mini Case Study Project: Investment Options 668
Chapter 22 Decision Making and Risk 675
22.1 Actions, States of Nature, and Outcomes
22.2 Payoff Tables and Decision Trees
22.3 Minimizing Loss and Maximizing Gain
22.4 The Expected Value of an Action
22.5 Expected Value with Perfect Information
22.6 Decisions Made with Sample Information
22.7 Estimating Variation
22.8 Sensitivity
22.9 Simulation
22.10 Probability Trees
*22.11 Reversing the Conditioning: Bayes’s Rule
22.12 More Complex Decisions
Mini Case Study Projects: Texaco-Pennzoil 693,
Insurance Services, Revisited 694
Chapter 23 Design and Analysis of Experiments and Observational Studies 699
23.1 Observational Studies
23.2 Randomized, Comparative Experiments
23.3 The Four Principles of Experimental Design
23.4 Experimental Designs
23.5 Blinding and Placebos
23.6 Confounding and Lurking Variables
23.7 Analyzing a Design in One Factor—The Analysis of Variance
23.8 Assumptions and Conditions for ANOVA
*23.9 Multiple Comparisons
23.10 ANOVA on Observational Data
23.11 Analysis of Multifactor Designs
Mini Case Study Project: A Multifactor Experiment 736
Chapter 24 Introduction to Data Mining 747
24.1 Direct Marketing
24.2 The Data
24.3 The Goals of Data Mining
24.4 Data Mining Myths
24.5 Successful Data Mining
24.6 Data Mining Problems
24.7 Data Mining Algorithms
24.8 The Data Mining Process
24.9 Summary
Appendixes
A Answers A-1
B Photo Acknowledgments A-37
C Tables and Selected Formulas A-41
D Index A-57
统计学是一门工具性学科,在众多的学科领域有着广泛的应用。本书将统计学的概念与方法应用于商务领域,从应用层面对统计学的基本方法进行了系统的讲解。全书包括探索和收集数据、理解数据和分布、探索变量间的关系以及为决策建立模型四部分内容,共24章,将方法的讲解与商务领域中的现实案例紧密结合起来,让读者掌握如何利用统计方法解决商务中的实际问题。本书还将统计软件与统计方法的应用结合起来,详细介绍各种统计方法在Excel、Minitab、JMP、SPSS和DataDesk等软件中的操作实现步骤。
本书可作为大学本科生和研究生的教材,也可供从事工商管理和经济分析的人士参考。
《商务统计学(英文版)》特点:1.强调统计知识和开发统计思维;2.使用真实数据;3.强调概念的理解而不仅仅是获取知识的过程;4.培养主动学习;5.在理解概念和分析数据时使用软件技术;6.强调对统计结果的分析过程。
书籍详细信息 | |||
书名 | 商务统计学站内查询相似图书 | ||
9787121106323 如需购买下载《商务统计学》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 电子工业出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 98.0 | 语种 | 英文 |
尺寸 | 26 × 18 | 装帧 | 平装 |
页数 | 896 | 印数 |