出版社:高等教育出版社
年代:2011
定价:89.0
本书提供了处理混沌分岔严密的数学解析函数工具,并提供严格完全的证明,书中通过许多有趣及形象的例子展示了一些具体的应用。本书讲述了大量的非线性问题,如:差分方程,常微分方程和偏微分方程,脉冲微分方程,分段光滑微分方程及在无限格上的微分方程等。本书可供对非线性机械系统的震动,弦或梁摆动,及应用动力系统中分岔方法的现代理论研究电路等问题感兴趣的数学家、物理学家、工程师等及相关专业研究生参考。
1 Introduction
References
2 Preliminary Results
2.1 Linear Functional Analysis
2.2 Nonlinear Functional Analysis
2.2.1 Banach Fixed Point Theorem
2.2.2 Implicit Function Theorem
2.2.3 Lyapunov-Schmidt Method
2.2.4 Brouwer Degree
2.2.5 Local Invertibility
2.2.6 Global Invertibility
2.3 Multivalued Mappings
2.4 Differential Topology
2.4.1 Differentiable Manifolds
2.4.2 Vector Bundles
2.4.3 Tubular Neighbourhoods
2.5 Dynamical Systems
2.5.1 Homogenous Linear Equatio
2.5.2 Chaos in Diffeomorphisms
2.5.3 Periodic ODEs
2.5.4 Vector Fields
2.5.5 Global Center Manifolds
2.5.6 Two-Dime ional Flows
2.5.7 Averaging Method
2.5.8 Carath6odory Type ODEs
2.6 Singularities of Smooth Maps
2.6.1 Jet Bundles
2.6.2 Whitney C~O Topology
2.6.3 Tra ve ality
2.6.4 Malgrange Preparation Theorem
2.6.5 Complex Analysis
References
3 Chaos in Discrete Dynamical Systems
3.1 Tra ve al Bounded Solutio
3.1.1 Difference Equatio
3.1.2 Variational Equation
3.1.3 Perturbation Theory
3.1.4 Bifurcation from a Manifold of Homoclinic Solutio
3.1.5 Applicatio to Impulsive Differential Equatio
3.2 Tra ve al Homoclinic Orbits
3.2.1 Higher Dime ional Difference Equatio
3.2.2 Bifurcation Result
3.2.3 Applicatio to McMillan Type Mappings
3.2.4 Planar Integrable Maps with Separatrices
3.3 Singular Impulsive ODEs
3.3.1 Singular ODEs with Impulses
3.3.2 Linear Singular ODEs with Impulses
3.3.3 Derivation of the Melnikov Function
3.3.4 Examples of Singular Impulsive ODEs
3.4 Singularly Perturbed Impulsive ODEs
3.4.1 Singularly Perturbed ODEs with impulses
3.4.2 Melnikov Function
3.4.3 Second Order Singularly Perturbed ODEs with Impulses
3.5 Inflated Deterministic Chaos
3.5.1 Inflated Dynamical Systems
3.5.2 Inflated Chaos
References
4 Chaos in Ordinary Differential Equatio
4.1 Higher Dime ional ODEs
4.1.1 Parameterized Higher Dime ional ODEs
4.1.2 Variational Equatio
4.1.3 Melnikov Mappings
4.1.4 The Second Order Melnikov Function
4.1.5 Application to Periodically Perturbed ODEs
4.2 ODEs with Nonresonant Center Manifolds
4.2.1 Parameterized Coupled Oscillato
4.2.2 Chaotic Dynamics on the Hyperbolic Subspace
4.2.3 Chaos in the Full Equation
4.2.4 Applicatio to Nonlinear ODEs
4.3 ODEs with Resonant Center Manifolds
4.3.1 ODEs with Saddle-Center Parts
4.3.2 Example of Coupled Oscillato at Resonance
4.3.3 General Equatio
4.3.4 Averaging Method
4.4 Singularly Perturbed and Forced ODEs
4.4.1 Forced Singular ODEs
4.4.2 Center Manifold Reduction
4.4.3 ODEs with Normal and Slow Variables
4.4.4 Homoclinic Hopf Bifurcation
4.5 Bifurcation from Degenerate Homoclinics
4.5.1 Periodically Forced ODEs with Degenerate Homoclinics...
4.5.2 Bifurcation Equation
4.5.3 Bifurcation for 2-Parametric Systems
4.5.4 Bifurcation for 4-Parametric Systems
4.5.5 Autonomous Perturbatio
4.6 Inflated ODEs
4.6.1 Inflated Carathtodory Type ODEs
4.6.2 Inflated Periodic ODEs
4.6.3 Inflated Autonomous ODEs
4.7 Nonlinear Diatomic Lattices
4.7.1 Forced and Coupled Nonlinear Lattices
4.7.2 Spatially Localized Chaos
References
5 Chaos in Partial Differential Equatio
5.1 Beams on Elastic Bearings
5.1.1 Weakly Nonlinear Beam Equation
5.1.2 Setting of the Problem
5.1.3 Preliminary Results
5.1.4 Chaotic Solutio
5.1.5 Useful Numerical Estimates
5.1.6 Lipschitz Continuity
5.2 Infinite Dime ional Non-Resonant Systems
5.2.1 Buckled Elastic Beam
5.2.2 Abstract Problem
5.2.3 Chaos on the Hyperbolic Subspace
5.2.4 Chaos in the Full Equation
5.2.5 Applicatio to Vibrating Elastic Beams
5.2.6 Planer Motion with One Buckled Mode
5.2.7 Nonplaner Symmetric Beams
5.2.8 Nonplaner No ymmetric Beams
5.2.9 Multiple Buckled Modes
5.3 Periodically Forced Compressed Beam
5.3.1 Resonant Compressed Equation
5.3.2 Formulation of Weak Solutio
5.3.3 Chaotic Solutio
References
6 Chaos in Discontinuous Differential Equatio
6.1 Tra ve al Homoclinic Bifurcation
6.1.1 Discontinuous Differential Equatio
6.1.2 Setting of the Problem
6.1.3 Geometric Interpretation of Nondegeneracy Condition..
6.1.4 Orbits Close to the Lower Homoclinic Branches
6.1.5 Orbits Close to the Upper Homoclinic Branch
6.1.6 Bifurcation Equation
6.1.7 Chaotic Behaviour
6.1.8 Almost and Quasiperiodic Cases
6.1.9 Periodic Case
6.1.10 Piecewise Smooth Planar Systems
6.1.11 3D Quasiperiodic Piecewise Linear Systems
6.1.12 Multiple Tra ve al Crossings
6.2 Sliding Homoclinic Bifurcation
6.2.1 Higher Dime ional Sliding Homoclinics
6.2.2 Planar Sliding Homoclinics
6.2.3 Three-Dime ional Sliding Homoclinics
6.3 Outlook
References
7 Concluding Related Topics
7.1 Notes on Melnikov Function
7.1.1 Role of Melnikov Function
7.1.2 Melnikov Function and Calculus of Residues
7.1.3 Second Order ODEs
7.1.4 Applicatio and Examples
7.2 Tra ve e Heteroclinic Cycles
7.3 Blue Sky Catastrophes
7.3.1 Symmetric Systems with Fi t Integrals
7.3.2 D'Alembert and Penalized Equatio
References
Index
《不连续及连续系统中的分岔和混沌》研究了大量的非线性问题,包括非线性差分方程、常微分方程和偏微分方程、脉冲微分方程、分段光滑微分方程及在无限格上的微分方程等。《不连续及连续系统中的分岔和混沌》可供对非线性机械系统的振动、弦或梁的摆动以及应用动力系统中分岔方法来研究电路等问题感兴趣的数学家、物理学家、工程师及相关专业研究生等参考。
系统介绍非线性动力系统中的混沌理论及其在力学与振动中的应用
详细讨论不连续动力系统中的混沌与分岔
给出了简明扼要的数学证明
提供了大量有趣而直观的例子
给出stick—slip系统混沌存在性的严格证明
将smale马蹄理论推广到了膨胀动力系统
书籍详细信息 | |||
书名 | 不连续及连续系统中的分岔和混沌站内查询相似图书 | ||
丛书名 | 非线性物理科学 | ||
9787040315332 如需购买下载《不连续及连续系统中的分岔和混沌》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 高等教育出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 89.0 | 语种 | 英文 |
尺寸 | 26 × 19 | 装帧 | 精装 |
页数 | 印数 | 1200 |
不连续及连续系统中的分岔和混沌是高等教育出版社于2011.2出版的中图分类号为 TP271 的主题关于 ,非线性系统(自动化)-研究-英文 的书籍。