出版社:高等教育出版社
年代:2011
定价:69.0
本书介绍了几何和理论物理领域一些重要的最新进展,内容包括Monge-Ampère方程, K?hler-Ricci流, 完全非线性椭圆型和抛物型方程,K?hler几何中的典范度量,广义相对论中的拟局部质量概念等。本书深入地分析了基本的几何对象和相关问题, 如Calabi-Yau流形及它们的K?hler-Ricci流和度量性质;介绍了适用于Monge-Ampère方程的有效且完备的方法;用非线性椭圆型方程的奇异解与Einstein方程的时间周期解讨论了Yang-Mills联络的性质;最后还讨论了微分几何及代数几何的辛结构。本书的每篇文章都是由该领域知名专家撰写,可供微分几何、代数几何、辛几何、理论物理等相关领域的研究人员参考。
Welcoming Speech (Extended) by lriedrich Hirzebruch
Speech of Thanks by Shing-Tung Yau
Preface
Part I. Monge-Ampre Equations and Nonlinear PartialDifferential Equations
Zbigniew Btocki: On Geodesics in the Space of K/hler Metrics
Udo Simon and Ruiwei Xu: Geometric Modelling Techniques for theSolution of Certain Monge-Ampre Equations
Ovidiu Savin: A Localization Property at the Boundary forMonge-Ampre Equation
Stawomir Dinew and Stawomir Kotodziej: PluripotentiM Estimates onCompact Hermitian Manifolds
Duong H. Phong and Jacob Sturm: On Pointwise Gradient Estimatesfor the Complex Monge-Ampre Equation
Luis Caffarelli, Yah Yah Li and Louis Nirenberg: Some Remarks onSingular Solutions of Nonlinear Elliptic Equations. II. Symmetryand Monotonicity via Moving Planes
Part II. Canonical Metrics in Kihler Geometry
Simon K. Donaldson: Calabi-Yau Metrics on Kummer Surfaces as a ModelGluing Problem
Jian Song and Yuan Yuan: The Khler-Ricci Flow on Singular Calabi-YauVarieties
Valentino Tosatti: The K-energy on Small Deformations of Constant ScalarCurvature Khler Manifolds
Part III. General Relativity and Yang-Mills Theory
De-Xing Kong and Kefeng Liu: Time-periodic Solutions of the EinsteinField Equations
Mu-Tao Wang: Quantitative Properties of the New Quasilocal Mass
Mike Scherfner, Simon Weiss and Shing-Tung Yau: A Review of theChern Conjecture for Isoparametric Hypersurfaces in Spheres
Mark Stern: Geometry of Stable Yang-Mills Connections
Part IV. Algebraic and Symplectic Methods
Kwokwai Chan and Naichung Conan Leung: Matrix Factorizationsfrom SYZ Transformations
Dominic Joyce: On Manifolds with Corners
Goo Ishikawa and Stanistaw Janeczko: Symplectic Invariants ofParametric Singularities
Fabrizio Catanese: Irreducibility of the Space of Cyclic Covers ofAlgebraic Curves of Fixed Numerical Type and the IrreducibleComponents of Sing(92;tg)
Meirav Amram, David Garber, Robert Shwartz and Mina Teicher:8-point -- Regenerations and Applications
《几何分析进展》介绍了几何和理论物理领域一些重要的最新进展,内容包括MORge—AmPere方程,Kahler—Ricci流,完全非线性椭圆型和拋物型方程,K~ihler几何中的典范度量,广义相对论中的拟局部质量概念等。《几何分析进展》深入地分析了基本的几何对象和相关问题,如Calabi—Yau流形及它们的Kahler—R.CC.流和度量性质;介绍了适用于Monge—Ampere方程的有效且完备的法;用非线性椭圆型方程的奇异解与Einsteiiq方程的时间周期解讨论了Yang—MillS联络的性质;最后还讨论了微分几何及代数几何的辛结构。《几何分析进展》的每篇文章都是由该领域知名专家撰写,可供微分几何、代数几何、辛几何、理论物理等相关领域的研究人员参考。
书籍详细信息 | |||
书名 | 几何分析进展站内查询相似图书 | ||
9787040331271 如需购买下载《几何分析进展》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 高等教育出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 69.0 | 语种 | 英文 |
尺寸 | 24 × 17 | 装帧 | 精装 |
页数 | 印数 | 1000 |
几何分析进展是高等教育出版社于2011.11出版的中图分类号为 O18 的主题关于 几何-数学分析-英文 的书籍。