半导体物理性能手册

半导体物理性能手册

(日) 足立贞夫, 主编

出版社:哈尔滨工业大学出版社

年代:2013

定价:150.0

书籍简介:

本册由7章组成,介绍Ⅳ族半导体,包括:1.钻石(C),2.硅(Si),3.锗(Ge),4.灰锡,5.立方碳化硅(3c原文如此),6.六角碳化硅(2h—4h—6h碳化硅等),7.菱形的碳化硅(15r—r—21、24r sic等),共7种化合物的结构属性、热性能、弹性、声子和晶格振动性质、集成效应和相关属性、能带结构:能带、能带结构:电子和孔有效质量、电子形变势、电子亲和力和肖特基势垒高度、光学特性、电光和非线性光学特性、载体运输属性等。

书籍目录:

Preface

Acknowledgments

Contents of Other Volumes

10 Cubic Cadmium Sulphide (c—CdS)

10.1 Structural Properties

10.1.1 Ionicity

10.1.2 Elemental Isotopic Abundance and Molecular Weight

10.1.3 Crystal Structure and Space Group

10.1.4 Lattice Constant and Its Related Parameters

10.1.5 Structural Phase Transition

10.1.6 Cleavage Plane

10.2 Thermal Properties

10.2.1 Melting Point and Its Related Parameters

10.2.2 Specific Heat

10.2.3 Debye Temperature

10.2.4 Thermal Expansion Coefficient

10.2.5 Thermal Conductivity and Diffusivity

10.3 Elastic Properties

10.3.1 Elastic Constant

10.3.2 Third—Order Elastic Constant

10.3.3 Young's Modulus, Poisson's Ratio, and Simila

10.3.4 Microhardness

10.3.5 Sound Velocity

10.4 Phonons and Lattice Vibronic Properties

10.4.1 Phonon Dispersion Relation

10.4.2 Phonon Frequency

10.4.3 Mode Gruneisen Parameter

10.4.4 Phonon Deformation Potential

10.5 Collective Effects and Related Properties

10.5.1 Piezoelectric Constant

10.5.2 Frohlich Coupling Constant

10.6 Energy—Band Structure: Energy—Band Gaps

10.6.1 Basic Propertie

10.6.2 Eo—Gap Region

10.6.3 Higher—Lying Direct Gap

10.6.4 Lowest Indirect Gap

10.6.5 Conduction—Valley Energy Separation

10.6.6 Direct—Indirect—Gap Transition Pressure

10.7 Energy—Band Structure: Electron and Hole Effective Masses

10.7.1 Electron Effective Mass: Γ Valley

10.7.2 Electron Effective Mass: Satellite Valley

10.7.3 Hole Effective Mass

10.8 Electronic Deformation Potential

10.8.1 Intravalley Deformation Potential: F Poin

10.8.2 Intravalley Deformation Potential: High—Symmetry Points

10.8.3 Intervalley Deformation Potential

10.9 Electron Affinity and Schottky Barrier Height

10.9.1 Electron Affinity

10.9.2 Schottky Barrier Height

10.10 Optical Properties

10.10.1 Summary ofOptical Dispersion Relations

10.10.2 The Reststrahlen Region

10.10.3 At or Near the Fundamental Absorption Edge

10.10.4 The Interband Transition Region

10.10.5 Free—Carrier Absorption and Related Phenomena

10.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties

10.11.1 Elastooptic Effect

10.11.2 Linear Electrooptic Constant

10.11.3 Quadratic Electrooptic Constant

10.11.4 Franz—Keldysh Effect

10.11.5 Nonlinear Optical Constant

10.12 Carrier Transport Properties

10.12.1 Low—Field Mobility: Electrons

10.12.2 Low—Field Mobility: Holes

10,12.3 High—Field Transport: Electrons

10.12.4 High—Field Transport: Holes

10.12.5 Minority—Carrier Transport: Electrons in p—Type Materials

10.12.6 Minority—Carrier Transport: Holes in n—Type Materials

10.12.7 Impact Ionization Coefficient

11 Wurtzite Cadmium Sulphide (w—CdS)

11.1 Structural Properties

11.1.1 Ionicity

11.1.2 Elemental Isotopic Abundance and Molecular Weight

11.1.3 Crystal Structure and Space Group

11.1.4 Lattice Constant and Its Related Parameters

11.1.5 Structural Phase Transition

11.1.6 Cleavage Plane

11.2 Thermal Properties

11.2.1 Melting Point and Its Related Parameters

11.2.2 Specific Heat

11.2.3 Debye Temperature

11.2.4 Thermal Expansion Coefficient

11.2.5 Thermal Conductivity and Diffusivity

11.3 Elastic Properties

11.3.1Elastic Constant

11.3.2 Third—Order Elastic Constant

11.3.3 Young's Modulus, Poisson's Ratio, and Similar

11.3.4 Microhardness

11.3.5 Sound Velocity

11.4 Phonons and Lattice Vibronic Properties

11.4.1 Phonon Dispersion Relation

11.4.2 Phonon Frequency

11.4.3 Mode Gruneisen Parameter

11.4.4 Phonon Deformation Potential

11.5 Collective Effects and Related Properties

11.5.1 Piezoelectric Constant

11.5.2 Frohlich Coupling Constant

11.6 Energy—Band Structure: Energy—Band Gaps

11.6.1 Basic Properties

11.6.2 Eo—Gap Region

11.6.3 Higher—Lying Direct Gap

11.6.4 Lowest Indirect Gap

11.6.5 Conduction—Valley Energy Separation

11.6.6 Direct—Indirect—Gap Transition Pressure

11.7 Energy—Band Structure: Electron and Hole Effective Masses

11.7.1 Electron Effective Mass: 1— Valley

11.7.2 Electron Effective Mass: Satellite Valley

11.7.3 Hole Effective Mass

11.8 Electronic Deformation Potential

11.8.1 Intravalley Deformation Potential: Γ Point

11.8.2 Intravalley Deformation Potential: High—Symmetry Points

11.8.3 Intervalley Deformation Potential

11.9 Electron Affinity and Schottky Barrier Height

11.9.1 Electron Affinity

11.9.2 Schottky Barrier Height

11.10 Optical Properties

11.10.1 Summary of Optical Dispersion Relations

11.10.2 The Reststrahlen Region

11.10.3 At or Near the Fundamental Absorption Edge

11.10.4 The Interband Transition Region

11.10.5 Free—Carrier Absorption and Related Phenomena

11.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties

11.11.1 Elastooptic Effect

11.11.2 Linear Electrooptic Constant

11.11.3 Quadratic Electrooptic Constant

11.11.4 Franz—Keldysh Effect

11.11.5 Nonlinear Optical Constant

11.12 Carrier Transport Properties

11.12.1 Low—Field Mobility: Electrons

11.12.2 Low—Field Mobility: Holes

11.12.3 High Field Transport: Electrons

11.12.4 High—Field Transport: Holes

11.12.5 Minority—Carrier Transport: Electrons in p—Type Materials

11.12.6 Minority—Carrier Transport: Holes in n—Type Materials

11.12.7 Impact Ionization Coefficient

12 Cubic Cadmium Selenide (c—CdSe)

12.1 Structural Properties

12.1.1 Ionicity

12.1.2 Elemental Isotopic Abundance and Molecular Weight

12.1.3 Crystal Structure and Space Group

12.1.4 Lattice Constant and Its Related Parameters

12.1.5 Structural Phase Transition

12.1.6 Cleavage Plane

12.2 Thermal Properties

12.2.1 Melting Point and Its Related Parameters

12.2.2 Specific Heat

12.2.3 Debye Temperature

12.2.4 Thermal Expansion Coefficient

12.2.5 Thermal Conductivity and Diffusivity

12.3 Elastic Properties

12.3.1 Elastic Constant

12.3.2 Third—Order Elastic Constant

12.3.3 Young's Modulus, Poisson's Ratio, and Similar

12.3.4 Microhardness

12.3.5 Sound Velocity

12.4 Phonons and Lattice Vibronic Properties

12.4.1 Phonon Dispersion Relation

12.4.2 Phonon Frequency

12.4.3 Mode Gruneisen Parameter

12.4.4 Phonon Deformation Potential

12.5 Collective Effects and Related Properties

12.5.1Piezoelectric Constant

12.5.2 Frohlich Coupling Constant

12.6 Energy—Band Structure: Energy—Band Gaps

12.6.1 Basic Properties

12.6.2 Eo—Gap Region

12.6.3 Higher—Lying Direct Gap

12.6.4 Lowest Indirect Gap

12.6.5 Conduction—Valley Energy Separation

12.6.6 Direct—Indirect—Gap Transition Pressure

12.7 Energy—Band Structure: Electron and Hole Effective Masses

12.7.1 Electron Effective Mass:F Valley

12.7.2 Electron Effective Mass: Satellite Valley

12.7.3 Hole Effective Mass

12.8 Electronic Deformation Potential

12.8.1Intravalley Deformation Potentiai: Γ Point

12.8.2 Intravalley Deformation Potential: High—Symmetry Points

12.8.3 Intervalley Deformation Potential

12.9 Electron Affinity and Schottky Barrier Height

12.9.1 Electron Affinity

12.9.2 Schottky Barrier Height

12.10 Optical Properties

12.10.1 Summary of Optical Dispersion Relations

12.10.2 The Reststrahlen Region

12.10.3 At or Near the Fundamental Absorption Edge

12.10.4 The Interband Transition Region

12.10.5 Free—Carrier Absorption and Related Phenomena

12.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties

12.11.1 Elastooptic Effect

12.11.2 Linear Electrooptic Constant

12.11.3 Quadratic Electrooptic Constant

12.11.4 Franz—Keldysh Effect

12.11.5 Nonlinear Optical Constant

12.12 Carrier Transport Properties

12.12.1Low—Field Mobility: Electrons

12.12.2 Low—Field Mobility: Holes

12.12.3 High—Field Transport: Electrons

12.12.4 High—Field Transport: Holes

12.12.5 Minority—Carrier Transport: Electrons in p—Type Materials

12.12.6 Minority—Carrier Transport: Holes in n—Type Materials

12.12.7 Impact Ionization Coefficient

……

13 Wurtzite Cadmium Selenide (w—CdSe)

14 Cadmium Telluride (CdTe)

15 Cubic Mercury Sulphide(β—HgS)

16 Mercury Selenide (HgSe)

17 Mercury Telluride (HgTe)

内容摘要:

The progress made in physics and technology of semiconductors depends main.ly on three families of materials: the group-IV elemental,Ⅲ-Ⅴ, and Ⅱ-Ⅵ compound semiconductors.Almost all ⅡⅥ compound semiconductors crystallize either in the zincblende or wurtzite structure.The first research papers on Ⅱ-Ⅶ compound semiconductors date back to the middle of the nineteenth century.In the ensuring hundred years extensive literature has been accumulated as much research and development works are being carried out on these compound semiconductors.At present, the Ⅱ-Ⅵ compound semiconductors are widely used as photodetectors, x-ray sensors and scintillators, phosphors in lighting, displays, etc.New applications are continuously being proposed.Thus, it seems to timely bring together the most up-to-date information on the material and semiconducting properties of Ⅱ-Ⅵ compound semiconductors.

书籍规格:

书籍详细信息
书名半导体物理性能手册站内查询相似图书
9787560345192
如需购买下载《半导体物理性能手册》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地哈尔滨出版单位哈尔滨工业大学出版社
版次1版印次1
定价(元)150.0语种英文
尺寸23 × 19装帧平装
页数印数

书籍信息归属:

半导体物理性能手册是哈尔滨工业大学出版社于2014.1出版的中图分类号为 TN304-62 的主题关于 半导体材料-物理性能-手册-英文 的书籍。