高等概率论

高等概率论

胡晓予, 著

出版社:科学出版社

年代:2009

定价:38.0

书籍简介:

本书包含四部分:第一为测度论基础;第二部分是概率论中的极限理论及相关知识;第三部分是离散鞅论;第四部分是关于随机游动及布朗运动的简单介绍.除理论介绍外,每章均配有习题。

书籍目录:

前言

第1章 测度与积分

1.1 符号与假定

1.2 集族与测度

1.3 测度的扩张

1.4 Lebesgue-Stieltjes测度

1.5 Hausdorff测度和填充测度

1.6 可测函数及其收敛性

1.7 可积函数及积分性质

习题1

第2章 测度的分解

2.1 测度的Jordan-Hahn分解

2.2 Radon-Nikodym定理

2.3 Radon-Nikodym定理在实分析中的应用

习题2

第3章 乘积空间上的测度与积分

3.1 乘积测度

3.2 Fubini定理

3.3 无穷维乘积空间上的测度

习题3

第4章 概率论基础

4.1 符号与概念

4.2 条件概率与条件期望

4.3 Borel-Cantelli引理

4.4 Kolmogorov零一律

习题4

第5章 中心极限定理

5.1 测度的弱收敛

5.2 特征函数

5.3 Lindeberg中心极限定理

5.4 无穷可分分布族

5.5 二重随机变量序列的极限定理

习题5

第6章 大数定律

6.1 级数收敛定理

6.2 大数定律

6.3 kolmogorov重对数律

习题6

第7章 离散鞅论

7.1 鞅的基本概念

7.2 鞅不等式和鞅的几乎处处收敛性

7.3 一致可积性与鞅的Lp收敛性

7.4 鞅的选样定理

习题7

第8章 随机过程选讲

8.1 随机游动与马氏链

8.2 布朗运动

8.3 高斯自由场

参考文献

索引

内容摘要:

《中国科学院研究生教学丛书:高等概率论》由三部分内容组成,部分一是测度论基础(第1-3章)。主要介绍测度的扩张定理和分解定理。Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等,第二部分是第4-6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论,这部分内容突出了经典的概率论证明技巧,第三部分为第7、8章,介绍一些特殊的随机过程,第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
  《中国科学院研究生教学丛书:高等概率论》适合教学专业的研究生作为教材,亦可作为教师参考用书。

书籍规格:

书籍详细信息
书名高等概率论站内查询相似图书
9787030251800
如需购买下载《高等概率论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位科学出版社
版次1版印次1
定价(元)38.0语种简体中文
尺寸24 × 0装帧平装
页数印数

书籍信息归属:

高等概率论是科学出版社于2009.2出版的中图分类号为 O211 的主题关于 概率论-高等学校-教材 的书籍。