可持续生物能源

可持续生物能源

(印) 巴德瓦杰 (Bhardwaj,A.K.) , (意) 泽诺内 (Zenone,T.) , (美) 陈吉泉 (Chen,J.) , 主编

出版社:高等教育出版社

年代:2014

定价:129.0

书籍简介:

随着石油资源日益枯竭,生物燃料越来越受到青睐。本书详细描述了第二代和第三代生物燃料生产系统的生态影响,涵盖了多种易于被采用的生物燃料种植的理论基础,并说明了实现利益所需要的生态条件。本书分为几大部分,分别介绍了不同的生物燃料作物模型、它们的生物地球化学的影响、边际土地利用、生物修复的前景、可持续性和全球潜力评估的生命周期分析原理。这些都是生物燃料行业和科学界最关心的关于可持续发展、环境和经济的重要方面。-第二代和第三代纤维素和传统的生物能源原料的生态意义-由来自超过10个国家的该领域的权威专家撰写-世界不同地区多种生物燃料原料的工作模式。

书籍目录:

Part I Introduction

1 The Sustainable Biofuels Paradigm

1.1 Biofuels: Opportunities and Challenges

1.1.1 From Fossil Fuels to 1st Generation Biofuels

1.1.2 A Case for 2nd and 3rd Generation Biofuels

1.2 The Sustainability Paradigm and Biofuels

References

Part II Biofuel Crop Models

2 Switchgrass for Bioenergy: Agro-ecological Sustainability

2.1 Introduction.

2.1.1 Switchgrass——A Short History of and the Case for

Its Use as a Biofuel Feedstock

2.2 Energetic and Economic Considerations in Sustainability

2.2.1 Energy In: Energy Out (Is Making Biofuel from

Switchgrass Energetically Feasible?~

2.2.2 Economic Tipping Points (Is Making Biofuel from

Switchgrass Economically Feasible?)

2.2.3 Using Value-added Products to Shift the Tipping Point

2.2.4 Farmer and Factory Relationships: Getting the Ball Rolling

2.2.5 Ethical/Social/Fairness Dimensions of the Sustainability '

2.3 Ecological/Environmental/Resource Considerations of

the Sustainability

2.3.1 Sustaining the Soil Resource'

2.3.2 Sustaining the Air Resource: GHGs and Climate

2.3.3 Sustaining the Water Resource: Depletion and Pollution Concerns~

2.3.4 Sustaining Biological Resources: Biodiversity

2.4 Managing Switchgrass for Bioenergy and Sustainability

2.4.1 Description, Adaptations, and Selection

2.4.2 Establishment

2.4.3 Fertility in an Agroecological and Sustainability Context

2.4.4 Mechanization, Storage, and Hauling

2.4.5 Demands of a Bioenergy Industry.

2.5 Conclusions

References

3 Sugarcane as an Alternative Source of

Sustainable Energy

3.1 Introduction

3.2 Energy Expenses in Sugarcane Production

3.3 Nutrient and Fertilizer Expenditures of Sugarcane

3.4 Sugarcane Bagasse: A Sustainable Energy Resource

3.4.1 Electricity Generation from Bagasse

3.4.2 Reduction in Greenhouse Gas (GHG) Emissions

3.4.3 Bagasse-based Byproducts and Future Energy Assessment

3.5 Sugarcane Trash: A Potential Biomass for Sustainable Energy

3.6 Sugarcane Biomass for Biofuel Production

3.6.1 Chemical Composition of Sugarcane Biomass

3.6.2 Conversion of Sugarcane Biomass into Ethanol

3.6.3 Pretreatment of Sugarcane Biomass

3.6.4 Enzymatic Hydrolysis/Saccharification of the Cellulosic Fraction

3.6.5 Detoxification of Cellulosic and Hemicellulosic Hydrolysates

3.6.6 Fermentation of Sugars from Sugarcane Biomass into Ethanol

3.6.7 Pyrolysis f Sugarcane Biomass

3.7 Conclusions

References

4 Jatropha (Jatropha curcas L.) as a New Biofuel Feedstock for

Semi-arid and Arid Regions and Its Agro-ecological

Sustainability Issues

4.1 Introduction

4.2 Systematics and Global Distribution.

4.3 Vegetative Growth and Sexual Reproduction

4.4 Optimal and Sub-optimal Climate and Growth Conditions

4.5 Propagation

4.6 Uses and Abuses of JCL

4.6.1 Traditional Non-fuel Uses

4.6.2 Feedstock for Biofuels

4.6.3 Utilization of JCL byproducts

4.7 JCL as a Sustainable Alternative to Fossil Fuels

4.7.1 Environmental Impacts

4.7.2 Socioeconomic Impacts

4.8 Significance of Irrigation and Fertilization for JCL Cultivation

4.8.1 Effects of Irrigation on Pot-grown JCL Plants

4.8.2 Effects of Irrigation on Field-grown JCL Plants

4.8.3 Effects of Fertilization on JCL Plants

4.9 Conclusions

References

5 Environmental Aspects of Willow Cultivation for

Bioenergy

5.1 Introduction

5.2 Willow Plantations

5.3 Carbon Sequestration and Greenhouse Gas Fluxes

5.3.1 Estimates of Growth and Carbon Sequestration

5.3.2 Eddy Flux Measurements

5.3.3 Closing the Carbon Budget

5.3.4 The Fertilization Effect

5.3.5 What Are the Limits?

5.3.6 Substitution Efficiency and Climate Effect

5.4 Conclusions

References

Part III Biofuels and Biogeochemical Impacts

6 Short Rotation Forestry for Energy Production in Italy:

Environmental Aspects and New Perspectives of

Use in Biofuel Industry

6.1 Introduction

6.2 Ecological Services Provided by SRF

6.2.1 Buffer Strips and Ecological Corridors.

6.2.2 Fertirrigation: Disposal of Livestock, Urban and

Industrial Wastewaters

6.2.3 Soil Erosion Control

6.2.4 CO2 Uptake and Carbon Sequestration

6.3 Biofuel Production and SRF

6.4 Conclusions

References

7 Populus and Salix Grown in a Short-rotation Coppice for

Bioenergy: Ecophysiology, Aboveground Productivity, and

Stand-level Water Use Efficiency

7.1 Introduction

7.2 Water Use of SRC

7.3 Water Use Efficiency of SRC

7.4 WUE and Related Ecophysiological Variables Literature Surveys

7.5 Case Study: Populus in the Bohemian-Moravian Highlands

7.5.1 Introduction

7.5.2 Site and Stand Description

7.5.3 Methods

7.5.4 Results and Discussion

7.6 Conclusions

References

Part IV Biofuels and Natural Resource Management

8 Afforestation of Salt-affected Marginal Lands with

Indigenous Tree Species for Sustainable Biomass and

Bioenergy Production

8.1 Introduction

8.2 Origin and Distribution of Salt-affected Soils in India

8.3 Properties of Salt-affected Soils

8.4 Natural Vegetation on Salt-affected Soils

8.5 Management Practices for Afforestation on Salt-affected Soils

8.5.1 Selection of Tree Species

8.5.2 Pre-planting Management Strategies

8.5.3 Planting Techniques

8.5.4 Post-planting Management Strategies

8.6 Biomass Production

8.6.1 Saline Soils

8.6.2 Sodic Soils

8.7 Bioenergy Production

8.8 Soil Amelioration

8.9 Conclusions

References

9 Bioenergy and Prospects for Phytoremediation

9.1 Introduction

9.2 Bioenergy Systems for Soil Phytoremediation

9.2.1 Phytoextraction of Heavy Metals

9.2.2 SRCs and Rhizodegradation of Organic Pollution

9.3 Bioenergy Systems for Water Phytoremediation

9.3.1 Phytoremediation Systems with Municipal Wastewater

9.3.2 Phytoremediation Systems with Landfill Leachate

References

Part V Life Cycle Assessment Principles

10 Eight Principles of Uncertainty for Life Cycle Assessment of

Biofuel Systems

10.1 Introduction: Regulatory LCA

10.2 Eight Principles of Uncertainty for LCA of Biofuel Systems

10.3 Principle 1: Biofuel Production Is a Complex System of Systems

10.4 Principle 2: Standardized LCA Methods for Biofuels Do Not Exist

10.5 Principle 3: Empirical Data Are Scarce for Most Aspects of Biofuels,

10.6 Principle 4: Local Biofuel LCAs Reduce Uncertainty and Errors

10.7 Principle 5: Sensitive Parameters Cause Order of

Magnitude Changes

10.7.1 Biorefinery Natural Gas Efficiency-

10.7.2 Agricultural N20 Emissions

10.7.3 Soil Organic Carbon Dynamics and CO2 Emissions,

10.7.4 Setting an Uncertainty Standard for Biofuel LCA

10.8 Principle 6: Indirect Emissions Are Numerous and

Highly Uncertain

10.8.1 Indirect Land Use Change

10.8.2 Multiple Indirect Effects and Global Economic Forecasting

10.9 Principle 7: Transparency Is Essential for Regulatory LCA

10.10 Principle 8: Fossil Fuel Reference Systems Are Diverse and

Uncertain

i10.11 Conclusions

References

11 Energy and GHG Emission Assessments of Biodiesel

Production in Mato Grosso, Brazil

11.1 Introduction

11.2 Study Area

11.3 Methods

11.3.1 Crop Selection

11.3.2 Identification of the Area Suitable for Cultivation

11.3.3 Settings and Constraints Specific for the Case Study

11.3.4 Problem Formulation

11.3.5 Other Impacts

11.4 Results

11.5 Discussion

11.6 Conclusions.

References

Part VI Global Potential Assessments

12 Biomass Potential of Switchgrass and Miscanthus on the

USA's Marginal Lands

12.1 Introduction

12.2 Methods

12.2.1 Identification of the USA's Marginal Lands

12.2.2 Processing Land Cover Data

12.2.3 NCCPI

12.2.4 Determination of Marginal Lands

12.2.5 Development of Empirical Models

12.2.6 Sample Data

12.2.7 Regional Model Simulations

12.2.8 Data Selection

12.2.9 Model Development and Validation.

12.3 Results and Discussion

12.3.1 USA Marginal Lands

12.3.2 Model Developments and Validations

12.3.3 Biomass Estimates of Switchgrass and Miscanthus

12.3.4 Comparison of Switchgrass and Miscanthus.

12.3.5 Limitations and Future Study

12.4 Conclusions

References

13 Global Agro-ecological Challenges in Commercial Biodiesel

Production from Jatropha curcas: Seed Productivity to

Disease Incidence

13.1 Introduction

13.2 Standardization of Agro-technology -

13.2.1 Propagation Techniques

13.2.2 Planting Material

13.2.3 Nursery Managemenl

13.2.4 Field Planting

13.3 Global Seed Productivity

13.4 Techno-commercial Economics

13.5 Scope for Improvements.

13.6 Disease Incidence

13.7 Soil Amelioration

13.8 Conclusions

References

Subject Index

内容摘要:

随着石油资源日益枯竭,生物燃料越来越受到青睐。《可持续生物能源:生态系统科学与应用(英文版)》详细描述了第二代和第三代生物燃料生产系统的生态影响,涵盖了多种易于被采用的生物燃料种植的理论基础,并说明了实现利益所需要的生态条件。《可持续生物能源:生态系统科学与应用(英文版)》分为几大部分,分别介绍了不同的生物燃料作物模型、它们的生物地球化学的影响、边际土地利用、生物修复的前景、可持续性和全球潜力评估的生命周期分析原理。这些都是生物燃料行业和科学界最关心的关于可持续发展、环境和经济的重要方面。

书籍规格:

书籍详细信息
书名可持续生物能源站内查询相似图书
丛书名生态系统科学与应用
9787040411218
如需购买下载《可持续生物能源》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位高等教育出版社
版次1版印次1
定价(元)129.0语种英文
尺寸24 × 17装帧精装
页数印数 1000

书籍信息归属:

可持续生物能源是高等教育出版社于2014.11出版的中图分类号为 TK6 的主题关于 生物能源-英文 的书籍。