出版社:科学出版社
年代:2014
定价:38.0
本书的主要内容包括引言、主成分分析、因子分析、判别分析和聚类分析、多元正态总体的推断、离散多元数据、连接函数模型、线性和非线性回归模型、广义线性模型、多元回归和MANOVA、纵向数据、相关专题等。本书可作为统计学专业本科和研究生双语教材
PrefaceChapter 1 Introduction1.1 Goal of Statistics1.2 Univariate Analysis1.3 Multivariate Analysis1.4 Multivariate Normal Distribution1.5 Unsupervised Learning and Supervised Learning1.6 Data Analysis Strategies and Statistical Thinking1.7 OutlineExercises 1Chapter 2 Principal Components Analysis2.1 The Basic Idea2.2 The Principal Components2.3 Choose Number of Principal Components2.4 Considerations in Data Analysis2.5 Examples in RExercises 2Chapter 3 Factor Analysis 3.1 The Basic Idea 3.2 The Factor Analysis Model 3.3 Methods for Estimation 3.4 Examples in R Exercises 3 Chapter 4 Discriminant Analysis and Cluster Analysis. 4.1 Introduction 4.2 Discriminant Analysis 4.3 Cluster Analysis 4.4 Examples in R Exercises 4Chapter 5 Inference for a Multivariate Normal Population5.1 Introduction5.2 Inference for Multivariate Means5.3 Inference for Covariance Matrices5.4 Large Sample Inferences about a Population Mean Vector5.5 Examples in RExercises 5Chapter 6 Discrete or Categorical Multivariate Data6.1 Discrete or Categorical Data6.2 The Multinomial Distribution6.3 Contingency Tables6.4 Associations Between Discrete or Categorical Variables6.5 Logit Models for Multinomial Variables6.6 Loglinear Models for Contingency Tables6.7 Example in RExercises 6Chapter 7 Copula Models7.1 Introduction7.2 Copula Models7.3 Measures of Dependence7.4 Applications in Actuary and Finance7.5 Applications in Longitudinal and Survival Data7.6 Example in RExercises 7Chapter 8 Linear and Nonlinear Regression Models8.1 Introduction8.2 Linear Regression Models8.3 Model Selection8.4 Model Diagnostics8.5 Data Analysis Examples with R8.6 Nonlinear Regression Models8.7 More on Model SelectionExercises 8Chapter 9 Generalized Linear Models9.1 Introduction9.2 The Exponential Family9.3 The General Form of a GLM9.4 Inference for GLM9.5 Model Selection and Model Diagnostics9.6 Logistic Regression Models9.7 Poisson Regression ModelsExercises 9Chapter 10 Multivariate Regression and MANOVA Models10.1 Introduction10.2 Multivariate Regression Models10.3 MANOVA Models10.4 Examples in RExercises 10Chapter 11 Longitudinal Data, Panel Data, and Repeated Measurements11.1 Introduction11.2 Methods for Longitudinal Data Analysis11.3 Linear Mixed Effects Models11.4 GEE ModelsExercises 11Chapter 12 Methods for Missing Data12.1 Missing Data Mechanisms12.2 Methods for Missing Data12.3 Multiple Imputation Methods12.4 Multiple Imputation by Chained Equations12.5 The EM Algorithm12.6 Example in RExercises 12Chapter 13 Robust Multivariate Analysis13.1 The Need for Robust Methods13.2 General Robust Methods13.3 Robust Estimates of the Mean and Standard Deviation 13.4 Robust Estimates of the Covariance Matrix 13.5 Robust PCA and Regressions 13.6 Examples in RExercises 13Chapter 14 Selected Topics14.1 Likelihood Methods14.2 Bootstrap Methods14.3 MCMC Methods and the Gibbs Sampler14.4 Survival Analysis14.5 Data Science, Big Data, and Data MiningReferencesIndex
The main contents of this book include principal components analysis, factor analysis, discriminant analysis and cluster analysis, inference for a multivariate normal population,discrete or categorical multivariate data, copula models, linear and nonlinear regression models, generalized linear models,multivariate regression and MANOVA models, longitudinal data, panel data, and repeated measurements, methods for missing data, robust multivariate analysis, and selected topics. The focus of this book is on conceptual understanding of the models and methods for multivariate data, rather than tedious mathematical derivations or proofs. Extensive real data examples are presented using software R. This book is written as a textbook for undergraduate and graduate students i statistics, as well as graduate students in other fields.
书籍详细信息 | |||
书名 | 应用多元统计分析与R软件站内查询相似图书 | ||
9787030412430 如需购买下载《应用多元统计分析与R软件》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 科学出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 38.0 | 语种 | 英文 |
尺寸 | 24 × 17 | 装帧 | 平装 |
页数 | 216 | 印数 |
应用多元统计分析与R软件是科学出版社于2016.6出版的中图分类号为 O212.4-39 的主题关于 多元分析-统计分析-应用软件-双语教学-高等学校-教材-英文 的书籍。