代数几何中的解析方法
代数几何中的解析方法封面图

代数几何中的解析方法

(法) 德马依 (Demailly,J.P.) , 著

出版社:高等教育出版社

年代:2010

定价:48.0

书籍简介:

本书作者Jean-Pierre Demailly 教授是法国格勒诺布尔第一大学数学系教授,著名数学家,1994年获选为法国科学院院士。本书讲述代数几何中的分析方法,该方法广泛地应用于线性系列,代数向量丛的消失定理等。

书籍目录:

introduction

chapter 1. preliminary material: cohomology, currents

1.a. dolbeault cohomology and sheaf cohomology

1.b. plurisubharmonic functions

1.c. positive currents

chapter 2. lelong numbers and intersection theory

2.a. multiplication of currents and monge-ampere operators

2.b. lelong numbers

chapter 3. hermitian vector bundles, connections and curvature

chapter 4. bochner technique and vanishing theorems

4.a. laplace-beltrami operators and hodge theory

4.b. serre duality theorem

4.cbochner-kodaira-nakano identity on kahler manifolds

4.d. vanishing theorems

chapter 5. l2 estimates and existence theorems

5.a. basic l2 existence thcorcms

5.b. multiplier ideal sheaves and nadel vanishing theorem

chapter 6. numerically effective andpseudo-effective line bundles

6.a. pseudo-effcctive line bundles and metrics with minimal singularities

6.b. nef line bundles

6.c. description of thc positive cones.

6.d. the kawamata-viehweg vanishing theorem

6.e. a uniform global generation property due to y.t. siu

chapter 7. a simple algebraic approach to fujitas conjecture

chapter 8. holomorphic morse inequalities

8.a. general analytic statement on compact complex manifolds

8.b. algebraic counterparts of the holomorphic morse inequalities

8.c. asymptotic cohomology groups

8.d. transcendental asymptotic cohomology unctions

chapter 9. effective version of matsusakas big theorem

chapter 10. positivity concepts for vector bundles

chapter 11. skodas l2 estimates for surjective bundle morphisms

11.a. surjectivity and division theorems

11.b. applications to local algebra: the briancon-skoda theorem

chapter 12. the ohsawa-takegoshi l2 extension theorem

12.a. the basic a priori inequality

12.b. abstract l2 existence theorem for solutions of0-equations

12.c. the l2 extension theorem

12.d. skodas division theorem for ideals of holomorphic functions

chapter 13. approximation of closed positive currents by analytic cycles

13.a. approximation of plurisubharmonic functions via bergman kernels

13.b. global approximation of closed (1,1)-currents on a compact complex manifold

13.c. global approximation by divisors

13.d. singularity exponents and log canonical thresholds

13.e. hodge conjecture and approximation of (p, p)- currents

chapter 14. subadditivity of multiplier ideals and fujitas approximate zariski decomposition

chapter 15. hard lefschetz theorem

with multiplier ideal sheaves

15.a. a bundle valued hard lefsehetz theorem

15.b. equisingular approximations of quasi plurisubharmonic functions

15.c. a bochner type inequality

15.d. proof of theorem 15.1

15.e. a counterexample

chapter 16. invariance of plurigenera of projective varieties

chapter 17. numerical characterization of the kahler cone

17.a. positive classes in intermediate (p, p)-bidegrees

17.b. numerically positive classes of type (1,1)

17.c. deformations of compact kahler manifolds

chapter 18. structure of the pseudo-effective cone and mobile intersection theory

18.a. classes of mobile curves and of mobile (n- 1,n- 1)-currents

18.b. zariski decomposition and mobile intersections

18.c. the orthogonality estimate

18.d. dual of the pseudo-effective cone

18.e. a volume formula for algebraic (1,1)-classes on projective surfaces

chapter 19. super-canonical metrics and abundance

19.a. construction of super-canonical metrics

19.b. invariance of plurigenera and positivity of curvature of super-canonical metrics

19.c. tsujis strategy for studying abundance

chapter 20. sius analytic approach and pauns non vanishing theorem

references

内容摘要:

This volume is an expansion of lectures given by the author at the Park City Mathematics Institute in 2008 as well as in other places. The main purpose of the book is to describe analytic techniques which are useful to study questions such as linear series, multiplier ideals and vanishing theorems for algebraic vector bundles. The exposition tries to be as condensed as possible, assuming that the reader is already somewhat acquainted with the basic concepts pertaining to sheaf theory,homological algebra and complex differential geometry. In the final chapters, some very recent questions and open problems are addressed, for example results related to the finiteness of the canonical ring and the abundance conjecture, as well as results describing the geometric structure of Kahler varieties and their positive cones.

书籍规格:

书籍详细信息
书名代数几何中的解析方法站内查询相似图书
9787040305319
如需购买下载《代数几何中的解析方法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位高等教育出版社
版次1版印次1
定价(元)48.0语种英文
尺寸24 × 17装帧精装
页数印数 1500

书籍信息归属:

代数几何中的解析方法是高等教育出版社于2010.9出版的中图分类号为 O187 的主题关于 代数几何-研究生-教材-英文 的书籍。