微分方程数值方法引论
微分方程数值方法引论封面图

微分方程数值方法引论

(美) 霍姆斯 (Holmes,M.H.) , 主编

出版社:科学出版社

年代:2011

定价:68.0

书籍简介:

本书内容包括:初值问题、两点边界值问题、扩散问题、平流方程、椭圆型问题等。

书籍目录:

Preface

1 Initial Value Problems

1.1 Introduction

1.1.1 Examples of IVPs

1.2 Methods Obtained from Numerical Differentiation .

1.2.1 The Five Steps

1.2.2 Additional Difference Methods

1.3 Methods Obtained from Numerical Quadrature

1.4 Runge--Kutta Methods

1.5 Extensions and Ghost Points

1.6 Conservative Methods

1.6.1 Velocity Verlet

1.6.2 Symplectic Methods

1.7 Next Steps

Exercises

2 Two-Point Boundary Value Problems

2.1 Introduction

2.1.1 Birds on a Wire

2.1.2 Chemical Kinetics

2.2 Derivative Approximation Methods

2.2.1 Matrix Problem

2.2.2 Tridiagonal Matrices

2.2.3 Matrix Problem Revisited

2.2.4 Error Analysis

2.2.5 Extensions

2.3 Residual Methods

2.3.1 Basis Functions

2.3.2 Residual

2.4 Shooting Methods

2.5 Next Steps

Exercises

3 Diffusion Problems

3.1 Introduction

3.1.1 Heat Equation

3.2 Derivative Approximation Methods

3.2.1 Implicit Method

3.2.2 Theta Method

3.3 Methods Obtained from Numerical Quadrature

3.3.1 Crank-Nicolson Method

3.3.2 L-Stability

3.4 Methods of Lines

3.5 Collocation

3.6 Next Steps

Exercises

4 Advection Equation

4.1 Introduction

4.1.1 Method of Characteristics

4.1.2 Solution Properties

4.1.3 Boundary Conditions

4.2 First-Order Methods

4.2.1 Upwind Scheme

4.2.2 Downwind Scheme

4.2.3 blumericul Domu'm of Dependence

4.2.4 Stability

4.3 Improvements

4.3.1 Lax-Wendroff Method

4.3.2 Monotone Methods

4.3.3 Upwind Revisited

4.4 Implicit Methods

Exercises

5 Numerical Wave Propagation

5.1 Introduction

5.1.1 Solution Methods

5.1.2 Plane Wave Solutions

5.2 Explicit Method

5.2.1 Diagnostics

5.2.2 Numerical Experiments

5.3 Numerical Plane Waves

5.3.1 Numerical Group Velocity

5.4 Next Steps

Exercises

6 Elliptic Problems

6.1 Introduction

6.1.1 Solutions

6.1.2 Properties of the Solution

6.2 Finite Difference Approximation

6.2.1 Building the Matrix

6.2.2 Positive Definite Matrices

6.3 Descent Methods

6.3.1 Steepest Descent Method

6.3.2 Conjugate Gradient Method

6.4 Numerical Solution of Laplace's Equation

6.5 Preconditioned Conjugate Gradient Method

6.6 Next Steps

Exercises

A Appendix

A.1 Order Symbols

A.2 Taylor's Theorem

A.3 Round-Off Error

A.3.1 Fhnction Evaluation

A.3.2 Numerical Differentiation

A.4 Floating-Point Numbers

References

Index

内容摘要:

《微分方程数值方法引论》内容包括:初值问题、两点边界值问题、扩散问题、平流方程、椭圆型问题等。

编辑推荐:

This book shows how to derive.tcst and analyze numerical methods for solving differential equations,including both ordinarv and partial differential equations.The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this iS done.Includes an extensive collection of exercises.which develop both the analytical and computational aspects ofthe material.In addition to more than 1 00 illustrations,the book includes a large collection of supplemental material:exercise sets.MATLAB computer codes for bOth student and instructor.1ecture slides and movies.

书籍规格:

书籍详细信息
书名微分方程数值方法引论站内查询相似图书
丛书名国外数学名著系列
9787030313874
如需购买下载《微分方程数值方法引论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位科学出版社
版次影印本印次1
定价(元)68.0语种英文
尺寸24 × 17装帧精装
页数 240 印数

书籍信息归属:

微分方程数值方法引论是科学出版社于2011.6出版的中图分类号为 O241.8 的主题关于 微分方程-数值计算-英文 的书籍。