出版社:世界图书出版公司北京公司
年代:2012
定价:69.0
本书是一部介绍单复变函数解析理论本科生教程,内容体系十分严谨但又不失基础性。本书从最基本定义开始,徐徐展开,除了微积分基本知识,没有做任何铺垫,深入讲解复分析的观点,可以说达到了这门学科的制高点。
Preface
Ⅰ The Complex Number System
1 The Algebra and Geometry of Complex Numbers
1.1 The Field of Complex Numbers
1.2 Conjugate, Modulus, and Argument
2 Exponentials and Logarithms of Complex Numbers
2.1 Raising e to Complex Powers
2.2 Logarithms of Complex Numbers
2.3 Raising Complex Numbers to Complex Powers
3 Functions of a Complex Variable
3.1 Complex Functions
3.2 Combining Functions
3.3 Functions as Mappings
4 Exercises for Chapter Ⅰ
Ⅱ The Rudiments of Plane Topology
1 Basic Notation and Terminology
1.1 Disks
1.2 Interior Points, Open Sets
1.3 Closed Sets
1.4 Boundary, Closure,Interior
1.5 Sequences
1.6 Convergence of Complex Sequences
1.7 Accumulation Points of Complex Sequences
2 Continuity and Limits of Functions
2.1 Continuity
2.2 Limits of Functions
3 Connected Sets
3.1 Disconnected Sets
3.2 Connected Sets
3.3 Domains
3.4 Components of Open Sets
4 Compact Sets
4.1 Bounded Sets and Sequences
4.2 Cauchy Sequences
4.3 Compact Sets
4.4 Uniform Continuity
5 Exercises for Chapter Ⅱ
Ⅲ Analytic Functions
1 Complex Derivatives
1.1 Differentiability
1.2 Differentiation Rules
1.3 Analytic Functions
2 The Cauchy-Riemann Equations
2.1 The Cauchy-Riemann System of Equations
2.2 Consequences of the Cauchy-Riemann Relations
3 Exponential and Trigonometric Functions
3.1 Entire Functions
3.2 Trigonometric Functions
3.3 The Principal Arcsine and Arctangent Functions
4 Branches oflnverse Functions
4.1 Branches of lnverse Functions
4.2 Branches of the pth-root Function
4.3 Branches of the Logarithm Function
4.4 Branches of the A-power Function
5 Differentiability in the Real Sense
5.1 Real Differentiability
5.2 The Functions fx and fz
6 Exercises for Chapter Ⅲ
Ⅳ Complex lntegration
1 Paths in the Complex Plane
1.1 Paths
1.2 Smooth and Piecewise Smooth Paths
1.3 Parametrizing Line Segments
1.4 Reverse Paths, Path Sums
……
Ⅴ Cauchy's Theorem and its Consequences
Ⅵ Harmonic Functions
Ⅶ Sequences and Series of Analytic Functions
Ⅷ Isolated Singularities of Analytic Functions
Ⅸ Conformal Mapping
Ⅹ Constructing Analytic functions
Appendix A Background on Fields
Appendix B Winding Numbers Revisited
Index
The book at hand has its origins in and reflects the structure of a course that I have given regularly over the years at the University of Texas. The course in question is an undergraduate honors course in complex analysis. Its subscribers are for the most part math and physics majors, but a smattering of engineering students, those interested in a more substantial and more theoretically oriented introduction to the subject than our normal undergraduate complex variables course offers, can usually be found in the class. My approach to the course has been from its inception to teach it in everything save scope like a beginning graduate course in complex function theory. (To be honest, I have included some material in the book that I do not ordinarily cover in the course, this with the admitted purpose of making the book a suitable text for a first course in complex analysis at the graduate level.) Thus, the tone of the course is quite rigorous, while its pace is rather deliberate. Faced with a clientele that is bright, but mathematically less sophisticated than, say, a class of mathematics graduate students would be, I considered it imperative to give students access to a complete written record of the goings-on in my lectures, one containing full details of proofs that I might only sketch in class, the accent there being on the central idea involved in an argument rather than on the nitty-gritty technicalities of the proof. I also deemed it wise to provide the students with a generous supply of worked-out examples appropriate to the lecture material. Since none of the textbooks available when I started teaching the course had exactly the emphasis I was looking for, l began to compile my own set of lecture notes. It is these notes that have evolved into the present
book.
书籍详细信息 | |||
书名 | 复函数论导论站内查询相似图书 | ||
9787510044069 如需购买下载《复函数论导论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 69.0 | 语种 | 英文 |
尺寸 | 21 × 17 | 装帧 | 平装 |
页数 | 588 | 印数 |
复函数论导论是世界图书出版公司北京公司于2012.3出版的中图分类号为 O174.5 的主题关于 复变函数论-英文 的书籍。