出版社:人民邮电出版社
年代:2015
定价:99.0
本书是一部经典的随机过程著作, 叙述深入浅出、涉及面广。主要内容有随机变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关随机模拟的内容,给随机系统运行的模拟计算提供了有力的工具。最新版还增加了不带左跳的随机徘徊和生灭排队模型等内容。
1 Introduction to Probability Theory 1.1 Introduction 1.2 Sample Space and Events 1.3 Probabilities Defined on Events 1.4 Conditional Probabilities 1.5 Independent Events 1.6 Bayes' Formula Exercises References 2 Random Variables 2.1 Random Variables 2.2 Discrete Random Variables 2.2.1 The Bernoulli Random Variable 2.2.2 The Binomial Random Variable 2.2.3 The Geometric Random Variable 2.2.4 The Poisson Random Variable 2.3 Continuous Random Variables 2.3.1 The Uniform Random Variable 2.3.2 Exponential Random Variables 2.3.3 Gamma Random Variables 2.3.4 Normal Random Variables 2.4 Expectation of a Random Variable 2.4.1 The Discrete Case 2.4.2 The Continuous Case 2.4.3 Expectation of a Function of a Random Variable 2.5 Jointly Distributed Random Variables 2.5.1 Joint Distribution Functions 2.5.2 Independent Random Variables 2.5.3 Covariance and Variance of Sums of Random Variables 2.5.4 Joint Probability Distribution of Functions of Random Variables 2.6 Moment Generating Functions 2.6.1 The Joint Distribution of the Sample Mean and Sample Variance from a Normal Population 2.7 The Distribution of the Number of Events that Occur 2.8 Limit Theorems 2.9 Stochastic Processes Exercises References 3 Conditional Probability and Conditional Expectation 3.1 Introduction 3.2 The Discrete Case 3.3 The Continuous Case 3.4 Computing Expectations by Conditioning 3.4.1 Computing Variances by Conditioning 3.5 Computing Probabilities by Conditioning 3.6 Some Applications 3.6.1 A List Model 3.6.2 A Random Graph 3.6.3 Uniform Priors, Polya's Urn Model, and Bose-Einstein Statistics 3.6.4 Mean Time for Patterns 3.6.5 The k-Record Values of Discrete Random Variables 3.6.6 Left Skip Free Random Walks 3.7 An Identity for Compound Random Variables 3.7.1 Poisson Compounding Distribution 3.7.2 Binomial Compounding Distribution 3.7.3 A Compounding Distribution Related to the Negative Binomial Exercises 4 Markov Chains 4.1 Introduction 4.2 Chapman-Kolmogorov Equations 4.3 Classification of States 4.4 Long-Run Proportions and Limiting Probabilities 4.4.1 Limiting Probabilities 4.5 Some Applications 4.5.1 The Gambler's Ruin Problem 4.5.2 A Model for Algorithmic Efficiency 4.5.3 Using a Random Walk to Analyze a Probabilistic Algorithm for the Satisfiability Problem 4.6 Mean Time Spent in Transient States 4.7 Branching Processes 4.8 Time Reversible Markov Chains 4.9 Markov Chain Monte Carlo Methods 4.10 Markov Decision Processes 4.11 Hidden Markov Chains 4.11.1 Predicting the States Exercises References 5 The Exponential Distribution and the Poisson Process 5.1 Introduction 5.2 The Exponential Distribution 5.2.1 Definition 5.2.2 Properties of the Exponential Distribution 5.2.3 Further Properties of the Exponential Distribution 5.2.4 Convolutions of Exponential Random Variables 5.3 The Poisson Process 5.3.1 Counting Processes 5.3.2 Definition of the Poisson Process 5.3.3 Interarrival and Waiting Time Distributions 5.3.4 Further Properties of Poisson Processes 5.3.5 Conditional Distribution of the Arrival Times 5.3.6 Estimating Software Reliability 5.4 Generalizations of the Poisson Process 5.4.1 Nonhomogeneous Poisson Process 5.4.2 Compound Poisson Process 5.4.3 Conditional or Mixed Poisson Processes 5.5 Random Intensity Functions and Hawkes Processes Exercises References 6 Continuous-Time Markov Chains 6.1 Introduction 6.2 Continuous-Time Markov Chains 6.3 Birth and Death Processes 6.4 The Transition Probability Function Pij(t) 6.5 Limiting Probabilities 6.6 Time Reversibility 6.7 The Reversed Chai
《应用随机过程 概率模型导论》是国际知名统计学家Sheldon M. Ross所著的关于基础概率理论和随机过程的经典教材,被加州大学伯克利分校、哥伦比亚大学、普度大学、密歇根大学、俄勒冈州立大学、华盛顿大学等众多国外知名大学所采用。 与其他随机过程教材相比,本书非常强调实践性,内含极其丰富的例子和习题,涵盖了众多学科的各种应用。作者富于启发而又不失严密性的叙述方式,有助于使读者建立概率思维方式,培养对概率理论、随机过程的直观感觉。对那些需要将概率理论应用于精算学、计算机科学、管理学和社会科学的读者而言,本书是一本极好的教材或参考书。 第11版新增大量例子和习题,还对连续时间的马尔可夫链、漂移布朗运动等内容做了修订,更加注重强化读者的概率直观。《应用随机过程 概率模型导论》是一部经典的随机过程著作, 叙述深入浅出、涉及面广。 主要内容有随机变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。 特别是有关随机模拟的内容, 给随机系统运行的模拟计算提供了有力的工具。最新版还增加了不带左跳的随机徘徊和生灭排队模型等内容。本书约有700道习题, 其中带星号的习题还提供了解答。 《应用随机过程 概率模型导论》可作为概率论与数理统计、计算机科学、保险学、物理学、社会科学、生命科学、管理科学与工程学等专业随机过程基础课教材。【作者简介】Sheldon M. Ross 国际知名概率与统计学家,南加州大学工业工程与运筹系系主任。1968年博士毕业于斯坦福大学统计系,曾在加州大学伯克利分校任教多年。研究领域包括:随机模型、仿真模拟、统计分析、金融数学等。Ross教授著述颇丰,他的多种畅销数学和统计教材均产生了世界性的影响,如《概率论基础教程(第8版)》等。