出版社:世界图书出版公司北京公司
年代:2011
定价:48.0
本书由在国际上享有盛誉的普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。
Foreword
Introduction
1 Fourier series: completion
2 Limits of continuous functions
3 Length of curves
4 Differentiation and integration
5 The problem of measure
Chapter 1. Measure Theory
1 Prelhninaries
2 The exterior measure
3 Measurable sets and the Lebesgue measure
4 Measurable functions
4.1 Definition and basic properties
4.2 Approximation by simple functions or step functions
4.3 Littlewood's three principles
5 The Brunn-Minkowski inequality
6 Exercises
7 Problems
Chapter 2. Integration Theory
1 The Lebesgue integral: basic properties and convergence theorems
2 The space L1 ofintegrable functions
3 Fubini's theorem
3.1 Statement and proof of the theorem
3.2 Applications of Fubini's theorem
4* A Fourier inversion formula
5 Exercises
6 Problems
Chapter 3. Differentiation and Integration
1 Differentiation of the integral
1.1 The Hardy-Littlewood maximal function
1.2 The Lebesgue differentiation theorem
2 Good kernels and approximations to the identity
3 Differentiability of functions
3.1 Functions of bounded variation
3.2 Absolutely continuous functions
3.3 Differentiability ofjump functions
4 Rectifiable curves and the isoperimetric inequality
4.1 Minkowski content of a curve
4.2 Isoperimetric inequality
5 Exercises
6 Problems
Chapter 4. Hilbert Spaces: An Introduction
1 The Hilbert space L2
2 Hilbert spaces
2.1 Orthogonality
2.2 Unitary mappings
2.3 Pre-Hilbert spaces
3 Fourier series and Fatou's theorem
3.1 Fatou's theorem
4 Closed subspaces and orthogonal projections
5 Linear transformations
5.1 Linear functionals and the Riesz representation theorem
5.2 Adjoints
5.3 Examples
6 Compact operators
7 Exercises
8 Problems
Chapter 5. Hilbert Spaces: Several Examples
1 The Fourier transform on L2
2 The Hardy space of the upper half-plane
3 Constant coefficient partial differential equations
3.1 Weaak solutions
3.2 The main theorem and key estimate
4 The Dirichlet principle
4.1 Harmonic functions
4.2 The boundary value problem and Dirichlet's principle
5 Exercises
6 Problems
Chapter 6. Abstract Measure and Integration Theory
Chapter 7. Hausdorff Measure and Fractals
Notes and References
Bibliography
Symbol Glossary
Index
《实分析(英文)》在Princeton大学使用,同时在其它学校,比如UCLA等名校也在本科生教学中得到使用。其教学目的是,用统一的、联系的观点来把现代分析的“核心”内容教给本科生,力图使本科生的分析学课程能接上现代数学研究的脉络。
书籍详细信息 | |||
书名 | 实分析站内查询相似图书 | ||
9787510040535 如需购买下载《实分析》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 48.0 | 语种 | 英文 |
尺寸 | 21 × 17 | 装帧 | 平装 |
页数 | 420 | 印数 |
实分析是世界图书出版公司北京公司于2011.12出版的中图分类号为 O174.1 的主题关于 实分析-高等学校-教材-英文 的书籍。
(美) H.L.罗伊登 (H. L. Royden) , (美) P.M.菲茨帕特里克 (P. M. Fitzpatrick) , 著
(美) 斯坦 (Stein,E.M.) , 著
(加) 汤姆森 (Thomson,B.S.) , (美) 布鲁克纳 (Bruckner,J.B.) , (美) 布鲁克纳 (Bruckner,A.M.) , 著
(美) 阿里普兰蒂斯 (Aliprantis,C.D.) , 著
(美) 斯通 (Stoll,M.) , 著
(美) 伊莱亚斯·M.斯坦恩 (Elias M. Stein) , (美) 拉米·沙卡什 (Rami Shakarchi) , 著
(美) H.L.罗伊登 (H.L.Royden) , (美) P.M.菲茨帕特里克 (P.M.Fitzpatrick) , 著
于延栋, 编著
(美) 德贝内代托 (DiBenedetto,E.) , 著