出版社:人民邮电出版社
年代:2009
定价:69.0
本书主要内容有组合分析、概率论公理化、条件概率和独立性、随机变量的联合分布、期望的性质、极限定理等。
1 CombinatorialAnalysis
1.1 Introduction
1.2 TheBasicPrincipleofCounting
1.3 Permutations
1.4 Combinations
1.5 MultinomialCoefficients
1.6 TheNumberofIntegerSolutlonsofEquations
Summary
Problems
TheoreticalExercises
Self-TestProblemsandExercises
2 AxiomsofProbability
2.1 Introduction
2.2 SampleSpaceandEvents
2.3 AxiomsofProbability
2.4 SomeSimplePropositions
2.5 SampleSpaceHavingEquallyLikelyOutcomes 33
2.6 ProbabilityasaContinuousSetFunction
2.7 ProbabilityasaMeasureofBelief
Summary
Problems
TheoreticalExercises
Self-TestProblemsandExercises
3 ConditionalProbabilityandIndependence
3.1 Introduction
3.2 ConditionalProbabilities
3.3 BayessFormula
3.4 IndependentEvents
3.5 P(·|F)IsaProbability
Summary
Problems
TheoreticalExercises
Self-TestProblemsandExercises
4 RandomVariables
4.1 RandomVariables
4.2 DiscreteRandomVariables
4.3 ExpectedValue
4.4 ExpectationofaFunctionofaRandomVariable
4.5 Variance
4.6 TheBernoulhandBinomialRandomVariables
4.6.1 PropertiesofBinomialRandomVariables
4.6.2 ComputingtheBinomialDistributionFunction
4.7 ThePoissonRandomVariable
4.7.1 ComputingthePoissonDistributionFunction
4.8 OtherDiscreteProbabilityDistributions
4.8.1 TheGeometricRandomVariable
4.8.2 TheNegativeBinomialRandomVariable
4.8.3 TheHypergeometricRandomVariable
4.8.4 TheZeta(orZipf)Distribution
4.9 ExpectedValueofSumsofRandomVariables
4.10 PropertiesoftheCumulativeDistributionFunction
Summary
Problems
TheoreticalExercises
Self-TestProblemsandExercises
5 ContinuousRandomVariables
51 Introduction
5.2 ExpectationandVarianceofContinuousRandomVariables
5.3 TheUniformRandomVariable
5.4 NormalRandomVariables
5.4.1 TheNormalApproximationtotheBinomialDistribution
5.5 ExponentialRandomVariables
5.5.1 HazardRateFunctions
5.6 OtherContinuousDistributions
5.6.1 TheGammaDlstrlbutlon
5.6.2 TheWeibullDlStrlbutlon
5.6.3 TheCauchyDistribution
5.6.4 TheBetaDlStrlbutlon
5.7 TheDistributionofaFunctionofaRandomVariable
Summary
Problems
TheoreticalExercises
Self-TestProblemsandExercises
6 JointlyDistributedRandomVariables
6.1 JointDistributionFunctions
6.2 IndependentRandomVariables
6.3 SumsofIndependentRandomVariables
6.3.1 IdenticallyDistributedUniformRandomVariables
6.3.2 GammaRandomVariables
6.3.3 NormalRandomVariables
6.3.4 PolssonandBinomialRandomVariables
635 GeometricRandomVariables
6.4 ConditionalDistribution:DiscreteCase
6.5 ConditionalDistribution:ContinuousCase
66 OrderStatistics
6.7 JointProbabilityDistributionofFunctionsofRandomVariables
6.8 ExciaanzeaoleRandomVariables
Summary
Problems
TheoreticalExercises
SelfTestProblemsandExercises
7 PropertiesofExpectation
7.1 Introduction
7.2 ExpectationofSumsofRandomVariablviatheProbabilisticMethod
7.2.2 TheMaximum-MinimumsIdentity
7.3 MomentsoftheNumberofEventsthatOccur
7.4 Covariance,VarianceofSums,andCorrelations
7.5 ConditionalExpectation
7.5.1 Definitions
7.5.2 ComputingExpectationsbyConditioning
7.5.3 ComputingProbabilitiesbyConditioning
7.5.4 ConditionalVariance
7.6 ConditionalExpectationandPrediction
7.7 MomentGeneratingFunctions
7.7.1 JointMomentGeneratingFunctions
7.8 AddltlonaproprietariesofNormalRandomVariables
7.8.1 TheMultivariateNormalDlstrlbution
7.8.2 TheJointDistributionoftheSampleMeanandSampleVariance
7.9 GeneralDefinitionofExpectation
Summary
Problems
TheoreticalExercises
Self-TestProblemsandExercises
8 LimitTheorems
8.1 Introduction
8.2 ChebyshevsInequalityandtheWeakLawofLargeNumbers
8.3 TheCentralLimitTheorem
8.4 TheStrongLawofLargeNumbers
8.5 OtherInequamles
8.6 BoundingtheErrorProbabilityWhenApproximatingaSumofIndependentBernoulliRandomVariablesbyaPoissonRandomVariable
Summary
Problems
TheoreticalExercises
Self-TestProblemsandExercises
9 AdditionalTopicsinProbability
9.1 ThePoissonProcess
9.2 MarkovChains
9.3 Surprise,Uncertainty,andEntropy
9.4 CodingTheoryandEntropy
Summary
ProblemsandTheoreticalExercises
Self-TestProblemsandExercises
References
10 Simulation
10.1 Introduction
10.2 GeneralTechniquesforSimulatingContinuousRandomVariables
10.2.1 TheInverseTransformationMethod
10.2.2 TheRejectionMethod
10.3 SimulatingfromDiscreteDistributions
10.4 VarianceReductionTechniques
10.4.1 UseofAntitheticVariables
10.4.2 VarianceReductionbyConditioning
10.4.3 ControlVariates
Summary
Problems
Self-TestProblemsandExercises
Reference
AnswerstoSelectedProblems
SolutionstoSelf-TestProblemsandExercises
Index
《概率论基础教程(英文版·第8版)》是世界各国高校广泛采用的概率论教材,通过大量的例子讲述了概率论的基础知识,主要内容有组合分析、概率论公理化、条件概率和独立性、离散和连续型随机变量、随机变量的联合分布、期望的性质、极限定理等。《概率论基础教程(英文版·第8版)》附有大量的练习,分为习题、理论习题和自检习题三大类,其中自检习题部分还给出全部解答。《概率论基础教程(英文版·第8版)》适用于大专院校数学、统计、工程和相关专业(包括计算科学、生物、社会科学和管理科学)的学生阅读,也可供各学科专业科技人员参考。
《概率论基础教程(英文版·第8版)》叙述清晰、例子丰富,内容的选取不仅适合学生的兴趣,还有助于学生建立概率直觉。第8版与时俱进,增加了很多新的习题和例子,并新增两节内容,分别推导具有均匀分布和几何分布的随机变量和的分布。《概率论基础教程(英文版·第8版)》还附有大量的练习,分为习题、理论习题和自检习题三大类,其中自检习题部分还给出全部解答,有利于巩固和自测所学知识。概率论作为数学的一个重要分支,在众多领域发挥着越来越突出的作用。而这本经典的概率论教材,在世界各国的概率论教学中,也发挥着举足轻重的作用,据统计,在全球高校采用率最高。它初版于1976年,多年来不断重印修订,是作者几十年教学和研究经验的结晶。