天文光谱学 : 天文光谱的原子与分子物理学导论
天文光谱学 : 天文光谱的原子与分子物理学导论封面图

天文光谱学 : 天文光谱的原子与分子物理学导论

(英) 坦尼森 (Tennyson,J.) , 著

出版社:北京大学出版社

年代:2014

定价:41.0

书籍简介:

对于宇宙的观测,其信息几乎都来自于光。观测一方面要把光分解成各种成分,另一方面也要了解原子和分子的性质。本书对于这两方面都进行了系统讲述。在天文光谱学的研究中,本书能够提供丰富而实用的知识。本书适合天文学领域的研究者和研究生阅读。

作者介绍:

(英)坦尼森,伦敦大学学院教授。

书籍目录:

Preface

1.Why Record Spectra of Astronomical Objects?

1.1 A Historical Introduction

1.2 What One Can Learn from Studying Spectra

2.The Nature of Spectra

2.1 Transitions

2.2 Absorption and Emission

2.3 Other Measures of Transition Probabilities

2.4 Stimulated Emission

2.5 Optical Depth

2.6 Critical Density

2.7 Wavelength or Frequency?

2.8 The Electromagnetic Spectrum

3.Atomic Hydrogen

3.1 Overview

Preface

1.Why Record Spectra of Astronomical Objects?

1.1  A Historical Introduction

1.2  What One Can Learn from Studying Spectra

2.The Nature of Spectra

2.1  Transitions

2.2  Absorption and Emission

2.3  Other Measures of Transition Probabilities

2.4  Stimulated Emission

2.5  Optical Depth

2.6  Critical Density

2.7  Wavelength or Frequency?

2.8  The Electromagnetic Spectrum

3.Atomic Hydrogen

3.1  Overview

3.2  The Schrodinger Equation of Hydrogen-Like Atoms

3.3  Reduced Mass

3.4  Atomic Units

3.5  Wavefunctions for Hydrogen

3.6  Energy Levels and Quantum Numbers

3.7  H-Atom Discrete Spectra

3.8  H-Atom Spectra in Different Locations

3.8.1  Balmer series

3.8.2  Lyman series

3.8.3  Infrared lines

3.9  H-Atom Continuum Spectra

3.9.1  Processes

3.9.2  H-atom emission in H II regions

3.10  Radio Recombination Lines

3.11  Radio Recombination Lines for Other Atoms

3.12  Angular Momentum Coupling in the Hydrogen Atom

3.13  The Fine Structure of Hydrogen

3.14  Hyperfine Structure in the H Atom

3.15  Allowed Transitions

3.16  Hydrogen in Nebulae

4.Complex Atoms

4.1  General Considerations

4.2  Central Field Model

4.3  Indistinguishable Particles

4.4  Electron Configurations

4.5  The Periodic Table

4.6  Ions

4.7  Angular Momentum in Complex Atoms

4.7.1  L-S or Russell-Saunders coupling

4.7.2  j-j coupling

4.7.3  Why two coupling schemes?

4.8  Spectroscopic Notation

4.9  Parity of the Wavefunction

4.10  Terms and Levels in Complex Atoms

5.Helium Spectra

5.1  He I and He II Spectra

5.2  Selection Rules for Complex Atoms

5.3  Observing Forbidden Lines

5.4  Grotrian Diagrams

5.5  Potential Felt by Electrons in Complex Atoms

5.6  Emissions of Helium-Like Ions

6.Alkali Atoms

6.1  Sodium

6.2  Spin-Orbit Interactions

6.3  Fine Structure Transitions

6.4  Astronomical Sodium Spectra

6.5  Other Alkali Metal-Like Spectra

7.Spectra of Nebulae

7.1  Nebulium

7.2  The Bowen Mechanism

7.3  Two Valence Electrons

7.4  Autoionisation and Recombination

8.Spectra in Magnetic Fields

8.1  Uniform Magnetic Field

8.2  Strong Magnetic Field

8.3  Weak Magnetic Field

8.3.1  The normal Zeeman effect

8.3.2  The anomolous Zeeman effect

8.4  Spectra in Magnetic Field

9.X-Ray Spectra

9.1  Inner Shell Processes

9.2  The Solar Corona

9.3  The Structure of Highly Ionised Atoms

9.4  Isotope Effects

10.Molecular Structure

10.1  The Born-Oppenheimer Approximation

10.2  Electronic Structure of Diatomics

10.2.1  Labelling of electronic states

10.2.2 Symmetry

10.2.3 State labels

10.3  Schrodinger Equation

10.3.1  Nuclear motion in diatomic molecules

10.4  Fractionation

10.5  Vibration-Rotation Energy Levels

10.6  Temperature Effects

10.6.1  Rotational state populations

10.6.2  Vibrational state populations

10.6.3  Electronic state populations

11.Rotational Spectra

11.1  Rotational Structure of Polyatomic Molecules

11.2  Selection Rules: Pure Rotational Transitions

11.3  Selection Rules

11.4  Isotope Effects

11.5  Rotational Spectra of Other Molecules

11.6  Rotational Spectra of Molecular Hydrogen

11.7  Maser Emissions

12.Vibration-Rotation Spectra

12.1  Vibrations in Polyatomic Molecules

12.2  Vibrational Transitions

12.2.1  Structure of the spectrum

12.2.2  Isotope effects

12.2.3  Hydrogen molecule vibrational spectra

12.3  Astronomical Spectra

13.Electronic Spectra of Diatomic Molecules

13.1  Electronic Transitions

13.2  Selection Rules

13.2.1  Vibrational selection rules

13.2.2  Rotational selection rules

13.3  Transition Frequencies

13.4  Astronomical Spectra

13.5  Non-E Electronic States

Solutions to Model Problems

Further Reading and Bibliography

Index

内容摘要:

对于宇宙的观测,其信息几乎都来自于光。观测一方面要把光分解成各种成分,另一方面也要了解原子和分子的性质。《天文光谱学——天文光谱的原子与分子物理学导论(第二版)(英文影印版)》对于这两方面都进行了系统讲述。在天文光谱学的研究中,本书能够提供丰富而实用的知识。
  《天文光谱学——天文光谱的原子与分子物理学导论(第二版)(英文影印版)》适合天文学领域的研究者和研究生阅读。

编辑推荐:

观测宇宙主要靠光。对于光的分析,光谱分析至关重要。另外,对于分子和原子物理学的研究对光谱分析也是必不可少的。《天文光谱学——天文光谱的原子与分子物理学导论(第二版)(英文影印版)》综合了两方面的知识,是相关领域研究不可多得的佳作。

书籍规格:

书籍详细信息
书名天文光谱学 : 天文光谱的原子与分子物理学导论站内查询相似图书
丛书名中外物理学精品书系
9787301251706
如需购买下载《天文光谱学 : 天文光谱的原子与分子物理学导论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位北京大学出版社
版次2版(影印本)印次1
定价(元)41.0语种简体中文
尺寸19 × 13装帧平装
页数 240 印数 2000

书籍信息归属:

天文光谱学 : 天文光谱的原子与分子物理学导论是北京大学出版社于2014.12出版的中图分类号为 O433 ,P1 的主题关于 天文学-光谱学-英文 的书籍。