出版社:科学出版社
年代:2014
定价:120.0
本书从纳米尺度的视觉解释超导中的新现象,用于发明和改进神奇的纳米电子器件与系统。内容包括奇数频率配对、非均匀超导、π-位移等超导纳米结构、纳米器件中的复杂现象与理论模型。该书学术水平很好,属于国际水平。对教学和科研有很大帮助。
Contents
1 “Fluctuoscopy” of Superconductors 1
A.A. Varlamov
1.1 Introduction 2
1.2 ThermodynamicSuperconductiveFluctuations Close to Tc0 3
1.2.1 Rather Rayleigh–Jeans Fields than Boltzmann Particles 3
1.2.2 Manifestation of SF Close to Tc 5
1.3 Ginzburg–LandauTheory 9
1.3.1 GL Functional 9
1.3.2 Zero Dimensionality: The Exact Solution for the Heat Capacity Jump 10
1.3.3 Zero Dimensionality: The Exact Solution for the Fluctuation Magnetization 13
1.3.4 Fluctuation Diamagnetism in Lead Nanoparticles 15
1.4 Fluctuation Thermodynamics of Layered Superconductorin Magnetic Field 17
1.4.1 Lawrence–DoniachModel 17
1.4.2 General Formula for the Fluctuation Free Energyin Magnetic Field 19
1.4.3 Fluctuation Magnetization of Layered Superconductorand its Crossovers 20
1.5 Fluctuation Conductivityof Layered Superconductor 23
1.5.1 Time-DependentGL Equation 23
1.5.2 GeneralExpression for Paraconductivity 25
1.5.3 Paraconductivityof a Layered Superconductor 27
1.5.4 In-Plane Conductivity 28
1.5.5 Out-of Plane Conductivity 29
1.5.6 Analysis of the Limiting Cases 29
1.5.7 ComparisonwiththeExperiment 31
1.6 Quantum SuperconductiveFluctuations AboveHc2.0/ 33 ix
1.6.1 DynamicClusteringofFCPs 33
1.6.2 Manifestation of QF Above Hc2 .0/ 35
1.7 Fluctuation Conductivity of 2D Superconductor in Magnetic Field: A Complete Picture 37 References 41
2 Experimental Study of the Fluctuation-Governed Resistive State in Quasi-One-Dimensional Superconductors 45 K.Yu. Arutyunov
2.1 Introduction 45
2.2 Theory Background 46
2.3 SampleFabrication 48
2.4 Experiments 51
2.5 Thermally Activated Phase Slips (TAPS) 53
2.6 Quantum Phase Slips 57
2.7 Conclusion 64
References 65
3 Crossed Andreev Re.ection and Spin-Resolved Non-local Electron Transport 67 Mikhail S. Kalenkov and Andrei D. Zaikin
3.1 Introduction 68
3.2 Spin-Resolved Transportin Ballistic Systems 70
3.2.1 Quasiclassical Equations 70
3.2.2 Riccati Parameterization 71
3.2.3 BoundaryConditions 72
3.2.4 Green Functions 75
3.2.5 Non-local Conductance:General Results 77
3.2.6 Cross-Current 80
3.2.7 CorrectiontoBTK 84
3.3 DiffusiveFSFStructures 86
3.3.1 Quasiclassical Equations 87
3.3.2 BoundaryConditions 89
3.3.3 Spectral Conductances 90
3.3.4 I–V Curves 95
3.4 ConcludingRemarks 98
References 99
4 Non-local Transport in Superconductor–Ferromagnet Hybrid Structures 101
D. Beckmann
4.1 Introduction 101
4.2 Experiments 103
4.2.1 F/S Point Contacts 103
4.2.2 Spin Accumulation 104
4.2.3 Charge Imbalance 106
4.2.4 CoherentSubgapTransport 108
4.2.5 F/S Tunnel Contacts 111
4.3 Discussion 114
References 115
5 Odd-Frequency Pairing in Superconducting Heterostructures 117
A.A. Golubov,Y. Tanaka, Y. Asano, and Y. Tanuma
5.1 Introduction 118
5.2 Junctions in the Dirty Limit 119
5.3 Junctions in the Clean Limit 122
5.4 Summary 129
References 129
6 Ferromagnetic Josephson Junctions with Critical Current Density Arti.cially Modulated on a “Short” Scale 133
N.G. Pugach, M.Yu. Kupriyanov, E. Goldobin, D. Koelle,
R. Kleiner, A.S. Sidorenko,and C. Lacroix
6.1 Introduction 134
6.2 Ferromagnetic Josephson Junctions with Step-Like Interface Transparency 137
6.2.1 Model for SIFS Junction 137
6.2.2 SIFNS and SINFS Structures 143
6.2.3 SIFNS Junction with Few Steps of BoundaryTransparency 147
6.2.4 SIFNSJunctionsArray 149
6.3 Method for the Reliable Realization of a 'Josephson Junction 157
6.3.1 Phase Averaging of Rapid Oscillations withaNon-SinusoidalCPR 157
6.3.2 Discussion of the 'Junction Conditions 162
6.4 Conclusion 167
References 168
7 Josephson Effect in SFNS Josephson Junctions 171 T.Yu. Karminskaya, M.Yu. Kupriyanov, A.A. Golubov, and A.S. Sidorenko
7.1 Introduction 171
7.2 Effective Decrease in the ExchangeEnergyin S-(FN)S Josephson Structures 173
7.2.1 Structure of S-FN-S Junction and its MathematicalDescription 173
7.2.2 Analysis of Inverse Coherence Lengths and Critical Current 177
7.3 Josephson Effect in S-FN-S Structures with Arbitrary Thickness of Ferromagneticand NormalLayers 182
7.3.1 Properties of Inverse CoherenceLength q 184
7.3.2 ThicknessDependenceoftheCriticalCurrent 189
7.3.3 Solution of Linearized Usadel Equations 193
7.3.4 CalculationofCriticalCurrent 195
7.4 New Geometryof SFNS Junctions 199
7.4.1 Critical Current of SN-N-NS Josephson Junction 201
7.4.2 Critical Current of Devices with F Film in Weal Link Region 202
7.4.3 Calculation of Supercurrentfor SNF-NF-FNS Junction 211
7.4.4 Calculation of Supercurrentfor SNF-N-FNS Junction 214
7.4.5 CalculationofSupercurrentforSN-NF-NSJunction 215
7.5 Conclusion 216
References 217
8 Physics and Applications of Superconducting Phase Inverters Based on Superconductor– Ferromagnet–Superconductor Josephson Junctions 219
V.V. Ryazanov
8.1 Introduction 219
8.2 SFS Junctions: Thickness and Temperature Dependencesof Josephson Ground States 221
8.3 Phase-Sensitive Experiments: Phase Inversion and SpontaneousMagneticFlux 227
8.4 Applicationsof SuperconductingPhase Inverters 239
References 246
9 Point-Contact Study of the Rare-Earth Nickel-Borocarbide RNi2B2C(R D Y,Dy,Ho, Er, Tm,Lu) Superconductors 249 Yu.G. Naidyuk and I.K. Yanson
9.1 Introduction 250
9.2 Experimental 250
9.3 Point-Contact Andreev-Re.ection Spectroscopy of the SuperconductingGap 251
9.4 PCSpectroscopyofElectron–Phonon(BOSON)Interaction 256
9.5 Conclusion 259
References 260
10 Integrated Submm Wave Receiver: Development and Applications 263 Valery P. Koshelets, Manfred Birk, Dick Boersma, Johannes Dercksen, Pavel Dmitriev, Andrey B. Ermakov, Lyudmila V. Filippenko, Hans Golstein, RuudW.M.Hoogeveen,LeodeJong,AndreyV. Khudchenko, Nickolay V. Kinev, Oleg S. Kiselev, Pavel V. Kudryashov, Bart van Kuik, Arno de Lange, Gert de Lange, Irina L. Lapitsky, Sergey I. Pripolzin, Joris van Rantwijk, Avri M. Selig, Alexander S. Sobolev, Mikhail Yu Torgashin, Vladimir L. Vaks, Ed de Vries, Georg Wagner, and Pavel A. Yagoubov
10.1 Introduction 264
10.2 Flux Flow Oscillators 266
10.2.1 Nb–AlN–NbN FFO 267
10.2.2 SpectralPropertiesoftheFFO 272
10.3 TELIS 280
10.3.1 TELIS Instrument Design 280
10.3.2 SIR Channel Design 283
10.3.3 TELIS-SIR Channel Performance 284
10.3.4 Kiruna Campaigns and Preliminary Science Results 289
10.3.5 SIR for NoninvasiveMedical Diagnostics 291
10.4 Summary 294
References 295
11 Cryogenic Phase-Locking Loop System Based on SIS Tunnel Junction 297
A.V. Khudchenko,V.P. Koshelets, and K.V. Kalashnikov
11.1 Introduction 298
11.2 CPD Properties 299
11.2.1 Phase Characteristics 301
11.2.2 Frequency Characteristics 301
11.2.3 Amplitude Properties 301
11.3 CPLL System: Description and ExperimentalResults 303
11.4 FFO Phase-Locking Directly by HM 306
11.4.1 On the Theory of HM 306
11.4.2 ExperimentalDemonstration 309
11.5 Conclusions 311
References 312
Conclusion 315
Bibliography (Some relevant books and reviews) 317
About the Editor 319
Index 321
《超导纳米电子学基础》从纳米尺度的视觉解释超导中的新现象,用于发明和改进神奇的纳米电子器件与系统。内容包括奇数频率配对、非均匀超导、π-位移等超导纳米结构、纳米器件中的复杂现象与理论模型。《超导纳米电子学基础》学术水平很好,属于国际水平。对教学和科研有很大帮助。
书籍详细信息 | |||
书名 | 超导纳米电子学基础站内查询相似图书 | ||
丛书名 | 纳米科学与技术 | ||
9787030414250 如需购买下载《超导纳米电子学基础》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 科学出版社 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 120.0 | 语种 | 英文 |
尺寸 | 24 × 17 | 装帧 | 精装 |
页数 | 320 | 印数 |
超导纳米电子学基础是科学出版社于2014.7出版的中图分类号为 TN103 的主题关于 纳米材料-电子器件-英文 的书籍。
(美) 汉森 (Hanson,G.W.) , 编著
(波) 印纽斯基 (Iniewski,K.) , 编著
姜岩峰, 编著
(德) 戈瑟 (Goser,K.) , (德) 格洛斯科特 (Glosekotter,P.) , (德) 迪恩斯塔尔 (Dienstuhl,J.) , 著
蒋建飞, 编著
朱长纯, 贺永宁, 编著
薛增泉, 刘惟敏, 编著
程成, 程潇羽, 著
杜磊, 庄奕琪, 著