什么是数学:对思想和方法的基本研究
什么是数学:对思想和方法的基本研究封面图

什么是数学:对思想和方法的基本研究

(美) 柯朗 (Courant,R.) , (美) 罗宾 (Robbins,H.) , 著

出版社:人民邮电出版社

年代:2009

定价:59.0

书籍简介:

本书是世界著名的数学科普读物。它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人员,或是愿意做科学思考者都可以阅读此书。特别对中学数学教师、大学生和高中生,都是一本极好的参考书。

书籍目录:

PREFACETOSECONDEDITION

PREFACETOREVISEDEDITIONS

PREFACETOFIRSTEDITION

HowTOUSETHEBOOK

WHATISMATHEMATICS?

CHAPTERⅠ.THENATURALNUMBERS

Introduction

1.CalculationwithIntegers

1.LawsofArithraetic.2.TheRepresentationofIntegers.3.ComputationinSystemsOtherthantheDecimal.

2.TheInfinitudeoftheNumberSystem,MathematicalInduction

1.ThePrincipleofMathematical.Induction.2.TheArithmeticalProgression.3.TheGeometricalProgression.4.TheSumoftheFirstnSquares.5.AnImportantInequality.6.TheBinomialTheorem.7.FurtherRemarksonMathematicalInduction.

SUPPLEMENTTOCHAPTERI.THETHEORYOFNUMBERS

Introduction

1.ThePrimeNumbers

1.FundamentalFacts.2.TheDistributionofthePrimes.3.FormulasProducingPrimes.b.PrimesinAritluneticalProgressions.c.ThePrimeNumberTheorem.d.TwoUnsolvedProblemsConcerningPrimeNumbers.

2.Congruences

1.GeneralConcepts.2.FermatsTheorem.3.QuadraticResidues.

3.PythagoreanNumbersandFermatsLastTheorem

4.TheEuclideanAlgorithm

1.GeneralTheory.2.ApplicationtotheFundamentalTheoremofArithmetic.3.EulersFunction.FermatsTheoremAgain.4.ContinuedFractions.DiophantineEquations.

CHAPTERⅡ.THENUMBERSYSTEMOFMATHEMATICS

Introduction

1.TheRationalNumbers

1.RationalNumbersasaDeviceforMeasuring.2.IntrinsicNeedfortheRationalNumbers.PrincipalofGeneration.3.GeometricalInterpretationofRationalNumbers.

2.IncommensurableSegments,IrrationalNumbers,andtheConceptofLimit

1.Introduction.2.DecimalFractions.InfiniteDecimals.3.Limits.InfiniteGeometricalSeries.4.RationalNumbersandPeriodicDeci-maiN.5.GeneralDefinitionofIrrationalNumbersbyNested

Intervals6.AlternativeMethodsofDefiningIrrationalNumbers.DedekindCuts.

3.RemarksonAnalyticGeometry

1.TheBasicPrinciple.2.EquationsofLinesandCurves.

4.TheMathematicalAnalysisofInfinity

1.FundamentalConcepts.2.TheDenumerabilityoftheRationalNumbersandtheNon-DenumerabilityoftheContinuum.3.Cantors"CardinalNumbers."4.TheIndirectMethodofProof.5.TheParadoxesoftheInfinite.6.TheFoundationsofMathematics.

5.ComplexNumbers

1.TheOriginofComplexNumbers.2.TheGeometricalInterpretationofComplexNumbers.3.DeMoivresFormulaandtheRootsofUnity.4.TheFundamentalTheoremofAlgebra.

6.AlgebraicandTranscendentalNumbers

1.DefinitionandExistence.2.LiouvillesTheoremandtheConstructionofTranscendentalNumbers.

SUPPLEMENTTOCHAPTERII.THEALGEBRAOFSETS

1.GeneralTheory.2.ApplicationtoMathematicalLogic.3.AnApplicationtotheTheoryofProbability.

CHAPTERⅠ.GEOMETRICALCONSTRUCTIONS.THEALGEBRAOFNUMBERFIELDS

Introduction

PartⅠ.ImpossibilityProofsandAlgebra

1.FundamentalGeometricalConstructions

1.ConstructionofFieldsandSquareRootExtraction.2.RegularPolygons.3.ApolloniusProblem.

2.ConstructibleNumbersandNumberFields

1.GeneralTheory.2.AllConstructibleNumbersareAlgebraic.

3.TheUnsolvabilityoftheThreeGreekProblems

1.DoublingtheCube.2.ATheoremonCubicEquations.3.TrisectingtheAngle.4.TheRegularHeptagon.5.RemarksontheProblemofSquaringtheCircle.

PartⅡ.VariousMethodsforPerformingConstructions

4.GeometricalTransformations.Inversion

1.GeneralRemarks.2.PropertiesofInversion.3.GeometricalConstrnctionofInversePoints.4.HowtoBisectaSegmentandFindtheCenterofaCirclewiththeCompassAlone.

5.ConstructionswithOtherTools.MascheroniConstructionswithCompassAlone

1.AClassicalConstructionforDoublingtheCube.2.RestrictiontotheUseoftheCompassAlone.3.DrawingwithMechanicalInstruments.MechanicalCurves.Cycloids.4.Linkages.PeauceUiersandHartsInversors.

6.MoreAboutInversionsanditsApplications

1.InvarianceofAngles.FamiliesofCircles.2.ApplicationtotheProblemofApollonius.3.RepeatedReflections.

CHAPTERⅣ.PROJECTIVEGEOMETRY.AXIOMATICS.NON-EucLIDEANGEOMETRIES.

1.Introduction

……

CHAPTERⅤTOPOLOGY

CHAPTERⅥFUNCTIONSANDLIMITS

CHAPTERⅦMAXIMAANDMINIMA

CHAPTERⅧTHECALCULUS

CHAPTERⅨRECENTDEVELOPMENTS

APPENDIX:SUPPLEMENTARYREMARKS,PROBLEMS,ANDEXERCISES

SUGGESTIONSFORFURTHERREADING

SUGGESTIONSFORADDITIONALREADING

INDEX

内容摘要:

  这是一本人人都能读的数学书,将为你开启一扇认识数学世界的窗口。无论你是初学者还是专家,学生还是教师,哲学家还是工程师,通过这本书,你都将领略到数学之美,最终迷上数学。  本书是世界著名的数学科普读物。它荟萃了许多数学的奇珍异宝,对数学世界做了生动而易懂的描述。内容涵盖代数、几何、微积分、拓扑等领域,其中还穿插了许多相关的历史和哲学知识。  本书不仅是数学专业人员的必读之物,也是任何愿意做科学思考者的优秀读物。对于中学数学教师、高中生和大学生来说,这都是一本极好的参考书。

书籍规格:

书籍详细信息
书名什么是数学:对思想和方法的基本研究站内查询相似图书
9787115206930
如需购买下载《什么是数学:对思想和方法的基本研究》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位人民邮电出版社
版次1版印次1
定价(元)59.0语种英文
尺寸20装帧平装
页数 296 印数 3000

书籍信息归属:

什么是数学:对思想和方法的基本研究是人民邮电出版社于2009.06出版的中图分类号为 O1-49 的主题关于 数学-普及读物-英文 的书籍。