出版社:机械工业出版社
年代:2020
定价:79.0
全书共8章,从内容逻辑上可分为四部分。第一部分为第1~3章,首先介绍缺失值填补领域的数据缺失机制、基本概念、性能度量等基础知识,随后详细阐述目前基于统计学、机器学习的缺失值填补理论与方法。第二部分为第4~5章,对目前神经网络在缺失值填补领域的研究成果进行归纳总结,并从网络模型、填补方案角度阐述神经网络填补方法的设计及应用。第三部分为第6~7章,详细介绍面向不完整数据的TS建模过程,随后通过特征选择算法处理TS建模中的特征冗余问题,并从前提参数优化和结论参数优化两个角度改进TS模型。第四部分为第8章,以缺失值填补方法在我国贫困问题研究中的应用为例,展现缺失值填补方法的现实意义。
书籍详细信息 | |||
书名 | 基于机器学习的数据缺失值填补站内查询相似图书 | ||
丛书名 | 智能系统与技术丛书 | ||
9787111663058 如需购买下载《基于机器学习的数据缺失值填补》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 机械工业出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 79.0 | 语种 | 简体中文 |
尺寸 | 24 × 19 | 装帧 | 平装 |
页数 | 印数 |
孙建成, 戴利云, 著
(巴西) 迪亚戈·克里斯蒂亚诺·席尔瓦(Thiago Christiano Silva), 赵亮, 著
刘军, 编著
武光利, 编著
(日) 吉川隼人, 著
刘贞报, 著
(美) 康威 (Conway,D.) , 等著
(美) 詹森·贝尔 (Jason Bell) , 著
谢椿, 戴敏, 李文强, 主编