出版社:世界图书出版公司北京公司
年代:2009
定价:35.0
近年来,现代微分几何在理论物理中扮演着重要的角色,并且在相对论、宇宙学、高能量物理和场论、热动力学、流体力学以及力学中的应用也日益突显。
1Somebasicmathematics
1.1ThespaceRnanditstopology
1.2Mappings
1.3Realanalysis
1.4Grouptheory
1.5Linearalgebra
1.6Thealgebraofsquarematrices
1.7Bibliography
2Dffferentiablemanifoldsandtensors
2.1Defmitionofamanifold
2.2Thesphereasamanifold
2.3Otherexamplesofmanifolds
2.4Globalconsiderations
2.5Curves
2.6FunctionsonM
2.7Vectorsandvectorfields
2.8Basisvectorsandbasisvectorfields
2.9Fiberbundles
2.10Examplesoffiberbundles
2.11Adeeperlookatfiberbundles
2.12Vectorfieldsandintegralcurves
2.13Exponentiationoftheoperatord/dZ
2.14Liebracketsandnoncoordinatebases
2.15Whenisabasisacoordinatebasis?
2.16One-forms
2.17Examplesofone-forms
2.18TheDiracdeltafunction
2.19Thegradientandthepictorialrepresentationofaone-form
2.20Basisone-formsandcomponentsofone-forms
2.21Indexnotation
2.22Tensorsandtensorfields
2.23Examplesoftensors
2.24Componentsoftensorsandtheouterproduct
2.25Contraction
2.26Basistransformations
2.27Tensoroperationsoncomponents
2.28Functionsandscalars
2.29Themetrictensoronavectorspace
2.30Themetrictensorfieldonamanifold
2.31Specialrelativity
2.32Bibliography
3LiederivativesandLiegroups
3.1Introduction:howavectorfieldmapsamanifoldintoitself
3.2Liedraggingafunction
3.3Liedraggingavectorfield
3.4Liederivatives
3.5Liederivativeofaone-form
3.6Submanifolds
3.7Frobeniustheorem(vectorfieldversion)
3.8ProofofFrobeniustheorem
3.9Anexample:thegeneratorsors2
3.10Invariance
3.11Killingvectorfields
3.12Killingvectorsandconservedquantitiesinparticledynamics
3.13Axialsymmetry
3.14AbstractLiegroups
3.15ExamplesofLiegroups
3.16Liealgebrasandtheirgroups
3.17Realizationsandrepresentatidns
3.18Sphericalsymmetry,sphericalharmonicsandrepresentationsoftherotationgroup
3.19Bibliography
4DifferentialformsAThealgebraandintegralcalculusofforms
4.1Definitionofvolume-thegeometricalroleofdifferentialforms
4.2Notationanddefinitionsforantisymmetrictensors
4.3Differentialforms
4.4Manipulatingdifferentialforms
4.5Restrictionofforms
4.6Fieldsofforms
4.7Handednessandorientability
4.8Volumesandintegrationonorientedmanifolds
4.9N-vectors,duals,andthesymbol
4.10Tensordensities
4.11GeneralizedKroneckerdeltas
4.12Determinantsand
4.13MetricvolumeelementsBThedifferentialcalculusofformsanditsapplications
4.14Theexteriorderivative
4.15Notationforderivatives
4.16Familiarexamplesofexteriordifferentiation
4.17Integrabilityconditionsforpartialdifferentialequations
4.18Exactforms
4.19Proofofthelocalexactnessofclosedforms
4.20Liederivativesofforms
4.21Liederivativesandexteriorderivativescommute
4.22Stokestheorem
4.23Gausstheoremandthedefinitionofdivergence
4.24Aglanceatcohomologytheory
4.25Differentialformsanddifferentialequations
4.26Frobeninstheorem(differentialformsversion)
4.27ProofoftheequivalenceofthetwoversionsofFrobeniustheorem
4.28Conservationlaws
4.29Vectorsphericalharmonics
4.30Bibliography
5ApplicationsinphysicsAThermodynamics
5.1Simplesystems
5.2Maxwellandothermathematicalidentities
5.3Compositethermodynamicsystems:CaratheodorystheoremBHamilton/anmechanics
5.4Hamiltodianvectorfields
5.5Canonicaltransformations
5.6Mapbetweenvectorsandone-formsprovidedby
5.7Poissonbracket
5.8Many-particlesystems:symplecticforms
5.9Lineardynamicalsystems:thesymplecticinnerproductandconservedquantities
5.10FiberbundlestructureoftheHamiltonianequationsCElectromagnetism
5.11RewritingMaxwellsequationsusingdifferentialforms
5.12Chargeandtopology
5.13Thevectorpotential
5.14Planewaves:asimpleexampleDDynamicsofaperfectfluid
5.15RoleofLiederivatives
5.16Thecomovingtime-derivative
5.17Equationofmotion
5.18Conservationofvorticity
ECosmology
5.19Thecosmologicalprinciple
5.20Liealgebraofmaximalsymmetry
5.21Themetricofasphericallysymmetricthree-space
5.22ConstructionofthesixKillingvectors
5.23Open,closed,andflatuniverses
5.24Bibliography
6ConnectionsforRiemnnnianmanifoldsandgaugetheories
6.1Introduction
6.2Parallelismoncurvedsurfaces
6.3Thecovariantderivative
6.4Components:covariantderivativesofthebasis
6.5Torsion
6.6Geodesics
6.7Normalcoordinates
6.8Riemanntensor
6.9GeometricinterpretationoftheRiemanntensor
6.10Flatspaces
6.11Compatibilityoftheconnectionwithvolume-measureorthemetric
6.12Metricconnections
6.13Theaffineconnectionandtheequivalenceprinciple
6.14Connectionsandgaugetheories:theexampleofelectromagnetism
6.15Bibfiography
Appendix:solutionsandhintsforselectedexercises
Notation
Index
Thisbookalmstointroducethebeginningorworkingphysicisttoawiderangeofaualytictoolswhichhavetheiror/ginindifferentialgeometryandwhichhaverecentlyfoundincreasinguseintheoreticalphysics.Itisnotuncom-montodayforaphysicistsmathematicaleducationtoignoreallbutthesim-plestgeometricalideas,despitethefactthatyoungphysicistsareencouragedtodevelopmentalpicturesandintuitionappropriatetophysicalphenomena.Thiscuriousneglectofpicturesofonesmathematicaltoolsmaybeseenastheoutcomeofagradualevolutionovermanycenturies.Geometrywascertainlyextremelyimportanttoancientandmedievalnaturalphilosophers;itwasingeometricaltermsthatPtolemy,Copernicus,Kepler,andGalileoallexpressedtheirthinking.ButwhenDescartesintroducedcoordinatesintoEuclideangeometry,heshowedthatthestudyofgeometrycouldberegardedasanappli.cationofalgrebra.
书籍详细信息 | |||
书名 | 数学物理的几何方法站内查询相似图书 | ||
9787510004513 如需购买下载《数学物理的几何方法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 1版 | 印次 | 1 |
定价(元) | 35.0 | 语种 | 英文 |
尺寸 | 14 | 装帧 | 平装 |
页数 | 印数 | 1000 |
数学物理的几何方法是世界图书出版公司北京公司于2009.06出版的中图分类号为 O411.1 的主题关于 微分几何-应用-数学物理方法-英文 的书籍。