有限元方法的数学理论 : 第3版
有限元方法的数学理论 : 第3版封面图

有限元方法的数学理论 : 第3版

(美) 布雷 (Brenner,S.C.) , 著

出版社:世界图书出版公司北京公司

年代:2010

定价:55.0

书籍简介:

有限元法被广泛用于工程设计和工程分析。本书是Springer出版的《应用数学教材》丛书之15。全书分成15 章,极大地丰富了第1版的内容,增加了加性Schwarz预条件和自适应格,书的末尾详细讲述了差分算子,精辟阐释了Sccot-Zhang差分算子以及逼近基本原理。

书籍目录:

series preface

preface to the third edition

preface to the second edition

preface to the first edition

0 basic concepts

0.1 weak formulation of boundary value problems

0.2 ritz-galerkin approximation

0.3 error estimates

0.4 piecewise polynomial spaces - the finite element method

0.5 relationship to difference methods

0.6 computer implementation of finite element methods

0.7 local estimates

0.8 adaptive approximation

0.9 weighted norm estimates

0.x exercises

1 sobolev spaces

1.1 review of lebesgue integration theory

1.2 generalized (weak) derivatives

1.3 sobolev norms and associated spaces

1.4 inclusion relations and sobolev's inequality

1.5 review of chapter 0

1.6 trace theorems

1.7 negative norms and duality

1.x exercises

2 variational formulation of elliptic boundary value problems

2.1 inner-product spaces

2.2 hilbert spaces

2.3 projections onto subspaces

2.4 riesz representation theorem

2.5 formulation of symmetric variational problems

2.6 formulation of nonsymmetric variational problems

2.7 the lax-milgram theorem

2.8 estimates for general finite element approximation

2.9 higher-dimensional examples

2.x exercises

3 the construction of a finite element space

3.1 the finite element

3.2 triangular finite elements

the lagrange element

the hermite element

the argyris element

3.3 the interpolant

3.4 equivalence of elements

3.5 rectangular elements

tensor product elements

the serendipity element

3.6 higher-dimensional elements

3.7 exotic elements

3.x exercises

4 polynomial approximation theory in sobolev spaces

4.1 averaged taylor polynomials

4.2 error representation

4.3 bounds for riesz potentials

4.4 bounds for the interpolation error

4.5 inverse estimates

4.6 tensor. product polynomial approximation

4.7 isoparametric polynomial approximation

4.8 interpolation of non-smooth functions

4.9 a discrete sobolev inequality

4.x exercises

5 n-dimensional variational problems

5.1 variational formulation of poisson's equation

5.2 variational formulation of the pure neumann problem

5.3 coercivity of the variational problem

5.4 variational approximation of poisson's equation

5.5 elliptic regularity estimates

5.6 general second-order elliptic operators

5.7 variational approximation of general elliptic problems

5.8 negative-norm estimates

5.9 the plate-bending biharmonic problem

5.x exercises

6 finite element multigrid methods

6.1 a model problem

6.2 mesh-dependent norms

6.3 the multigrid algorithm

6.4 approximation property

6.5 w-cycle convergence for the kth level iteration

6.6 ]/-cycle convergence for the kth level iteration

6.7 full multigrid convergence analysis and work estimates

6.x exercises

7 additive schwarz preconditioners

7.1 abstract additive schwarz framework

7.2 the hierarchical basis preconditioner

7.3 the bpx preconditioner

7.4 the two-level additive schwarz preconditioner

7.5 nonoverlapping domain decomposition methods

7.6 the bps preconditioner

7.7 the neumann-neumann preconditioner

7.8 the bddc preconditioner

7.x exercises

8 max-norm estimates

8.1 main theorem

8.2 reduction to weighted estimates

8.3 proof of lemma 8.2.6

8.4 proofs of lemmas 8.3.7 and 8.3.11

8.5 lp estimates (regular coefficients)

8.6 lp estimates (irregular coefficients)

8.7 a nonlinear example

8.x exercises

9 adaptive meshes

9.1 a priori estimates

9.2 error estimators

9.3 local error estimates

9.4 estimators for linear forms and other norms

9.5 a convergent adaptive algorithm

9.6 conditioning of finite element equations

9.7 bounds on the condition number

9.8 applications to the conjugate-gradient method

9.x exercises

10 variational crimes

10.1 departure from the framework

10.2 finite elements with interpolated boundary conditions

10.3 nonconforming finite elements

10.4 isoparametric finite elements

10.5 discontinuous finite elements

10.6 poincare-friedrichs inequalitites for piecewise w1p functions

10.x exercises

11 applications to planar elasticity

11.1 the boundary value problems

11.2 weak formulation and korn's inequality

11.3 finite element approximation and locking

11.4 a robust method for the pure displacement problem

11.x exercises

12 mixed methods

12.1 examples of mixed variational formulations

12.2 abstract mixed formulation

12.3 discrete mixed formulation

12.4 convergence results for velocity approximation

12.5 the discrete inf-sup condition

12.6 verification of the inf-sup condition

12.x exercises

13 iterative techniques for mixed methods

13.1 iterated penalty method

13.2 stopping criteria

13.3 augmented lagrangian method

13.4 application to the navier-stokes equations

13.5 computational examples

13.x exercises

14 applications of operator-interpolation theory

14.1 the real method of interpolation

14.2 real interpolation of sobolev spaces

14.3 finite element convergence estimates

14.4 the simultaneous approximation theorem

14.5 precise characterizations of regularity

14.x exercises

references

index

内容摘要:

This edition contains four new sections on the following topics: the BDDC domain decomposition preconditioner (Section 7.8), a convergent adaptive algorithm (Section 9.5), interior penalty methods (Section 10.5) and Poincare-Friedrichs inequalities for piecewise Wp1 functions (Section 10.6).We have made improvements throughout the text, many of which were suggested by colleagues, to whom we are grateful. New exercises have been added and the list of references has also been expanded and updated.

书籍规格:

书籍详细信息
书名有限元方法的数学理论 : 第3版站内查询相似图书
9787510027437
如需购买下载《有限元方法的数学理论 : 第3版》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位世界图书出版公司北京公司
版次影印本印次1
定价(元)55.0语种英文
尺寸23 × 15装帧平装
页数 420 印数 1000

书籍信息归属:

有限元方法的数学理论 : 第3版是世界图书出版公司北京公司于2010.9出版的中图分类号为 O241.82 的主题关于 有限元法-数学理论-英文 的书籍。