出版社:清华大学出版社
年代:2011
定价:25.0
本书讨论通过动态规划进行优化的组合数据分析方法。
preface
1 introduction
2 general dynamic programming paradigm
2.1 an introductory example: linear assignment
2.2 the gdpp
3 cluster analysis
3.1 partitioning
3.1.1 admissibility restrictions on partitions
3.1.2 partitioning based on two-mode proximity matrices
3.2 hierarchical clustering
3.2.1 hierarchical clustering and the optimal fitting of
ultrametrics
3.2.2 constrained hierarchical clustering
4 object sequencing and seriation
4.1 optimal sequencing of a single object set
4.1.1 symmetric one-mode proximity matrices
preface
1 introduction
2 general dynamic programming paradigm
2.1 an introductory example: linear assignment
2.2 the gdpp
3 cluster analysis
3.1 partitioning
3.1.1 admissibility restrictions on partitions
3.1.2 partitioning based on two-mode proximity matrices
3.2 hierarchical clustering
3.2.1 hierarchical clustering and the optimal fitting of
ultrametrics
3.2.2 constrained hierarchical clustering
4 object sequencing and seriation
4.1 optimal sequencing of a single object set
4.1.1 symmetric one-mode proximity matrices
4.1.2 skew-symmetric one-mode proximity matrices
4.1.3 two-mode proximity matrices
4.1.4 object sequencing for symmetric one-mode proximity matrices
based on the construction of optimal paths
4.2 sequencing an object set subject to precedence
constraints
4.3 construction of optimal ordered partitions
5 heuristic applications of the gdpp
5.1 cluster analysis
5.2 object sequencing and seriation
6 extensions and generalizations
6.1 introduction
6.1.1 multiple data sources
6.1.2 multiple structures
6.1.3 uses for the information in the sets ω1,...,ωk
6.1.4 a priori weights for objects and/or proximities
6.2 prospects
appendix: available programs
bibliography
author index
subject index
combinatorial data analysis (cda) refers to a wide class of
methods for the study of relevant data sets in which the
arrangement of a collection of objects is absolutely central.
combinatorial data analysis: optimization by dynamic programming
focuses on the identification of arrangements, which are then
further restricted to where the combinatorial search is carried out
by a recursive optimization process based on the general principles
of dynamic programming (dp).
the authors provide a comprehensive and self-contained review
delineating a very general dp paradigm, or schema, that can serve
two functions. first, the paradigm can be applied in various
special forms to encompass all previously proposed applications
suggested in the classification literature. second, the paradigm
can lead directly to many more novel uses. an appendix is included
as a user's manual for a collection of programs available as
freeware.
the incorporation of a wide variety of cda tasks under one common
optimization framework based on dp is one of this book's strongest
points. the authors include verifiably optimal solutions to
nontrivially sized problems over the array of data analysis tasks
discussed.
this monograph provides an applied documentation source, as well as
an introduction to a collection of associated computer programs,
that will be of interest to applied statisticians and data analysts
as well as notationally sophisticated users.
书籍详细信息 | |||
书名 | 组合数据分析 : 通过动态规划进行优化站内查询相似图书 | ||
丛书名 | 国际著名数学图书 | ||
9787302245018 如需购买下载《组合数据分析 : 通过动态规划进行优化》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 清华大学出版社 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 25.0 | 语种 | 英文 |
尺寸 | 26 × 19 | 装帧 | 平装 |
页数 | 印数 | 3000 |
组合数据分析 : 通过动态规划进行优化是清华大学出版社于2011.出版的中图分类号为 O212.1 的主题关于 统计数据-统计分析(数学)-英文 的书籍。
(美) 奎斯塔 (Cuesta,H.) , 著
(美) 迈克尔·S.刘易斯-贝克, 著
(美) 伊森 (Isson,J.P.) , (美) 哈里奥特 (Harriott,J.S.) , 著
(美) 赫克托·奎斯塔 (Hector Cuesta) , (美) 桑帕斯·库马尔 (Dr.Sampath Kumar) , 著
(美) 梅内里 (Minelli,M.) , (美) 钱伯斯 (Chambers,M.) , (美) 帝拉吉 (Dhiraj,A.) , 著
(美) 刘易斯-贝克, 著
(美) 格林 (Glenn,N.D.) , 等著
(美) 诺克 (Knoke,D.) , 等著
(美) 苏尔李, 等著