随机过程高级教程
随机过程高级教程封面图

随机过程高级教程

(美) 卡林 (Karlin,S.) , (美) 泰勒 (Taylor,H.M.) , 著

出版社:人民邮电出版社

年代:2008

定价:79.0

书籍简介:

本书是《随机过程初级教程》的姊妹篇,涉及范围十分广泛,内容包括马尔可夫链的代数方法、转移概率的比定理及应用、连续时间马尔可夫链、扩散过程、复合随机过程、独立同分布随机变量部分和的波动理论、排队过程等。每章末都有很丰富的习题,并附有代表性的参考书目,非常便于进一步学习。 本书适合很多领域的读者,包括从事有关数学的、工程学的、物理学的、生物学的、社会科学以及管理科学中随机分析的理论研究者和实际工作者。

作者介绍:

Samuel Karlin,斯坦福大学荣休教授,国际著名的应用概率学家,美国科学院院士,数理统计学会会士。1987年获冯·诺伊曼奖。在生灭过程中计算平稳分布的Karlin-McGregor定理即以他的名字命名。   Howard M.Taylor,康奈尔大学荣休教授,国际著名的应用概率学家。

书籍目录:

Chapter 10 ALGEBRAIC METHODS IN MARKOV CHAINS

1.Preliminaria

2.Relations of Eigenvalues and Recurrence Claum

3.Periodic Classes

4.Special Computational Methods in Markov Chains

5.Examples

6.Applications to Coin Tomin

Elementary Problems

Problermt

Nores

References

Chapter 11 RATIO THEoREMS oF TRANSITl0N PROBABILITIES AND APPLICATl0NS

1.Taboo Probabilities

2.RatioTheorems

3.Existence of Generalized Stationary Distributions

4.Interpretation of Generalized Stationary Distributions

5.Regular, Superregular, and Subregular Sequences for Markov Chains

6.Stopping Rule Problems

Elementary Problems

Problems

Notes

References

Chapter 12 SUMS OF INDEPENDENT RANDOM VARIABLES AS A MARKOV CHAIN

1.Recurrence Properties of Sums of Independent Random Variables

2.Local Limit Theorems

3.Right Regular Sequences for the Markov Chain

4.The Discrete Renewal Theorem

Elementary Problems

Problems

Notes

References

Chapter 13 ORDER STATISTICS, POISSON PROCESSES, AND

APPLICATIONS

1.Order Statistics and Their Relation to Poisson Processes

2.The Ballot Problem

3.Empirical Distribution Functions

4.Some Limit Distributions for Empirical Distribution Functions

Elementary Problems

Problems

Notes

References

Chapter 14 CONTINUOUS TIME MARKOV CHAINS

1. Differentiability Properties of Transition Probabilities

2. Conservative Processes and the Forward and Backward Differential Equations

3. Construction of a Continuous Time Markov Chain from Its Infinitesimal Parameters

4. Strong Markov Property

Problems

Notes

References

Chapter 15 DIFFUSION PROCESSES ..

1. General Description

2. Examples of Diffusion

3. Differential Equations Associated with Certain Functionals

4. Some Concrete Cases of the Functional Calculations

5. The Nature of Backward and Forward Equations and Calculation of Stationary Measures

6. Boundary Classification for Regular Diffusion Processes

7. Some Further Characterization of Boundary Behavior

8. Some Constructions of Boundary Behavior of Diffusion Processes

9. Conditioned Diffusion Processes

10. Some Natural Diffusion Models with Killing

11. Semigroup Formulation of Continuous Time Markov Processes

12. Further Topics in the Semigroup Theory of Markov Processes and Applications to Diffusions

13. The Spectral Representation of the Transition Density for a Diffusion

14. The Concept of Stochastic Differential Equations

15. Some Stochastic Differential Equation Models

16. A Preview of Stochastic Differential Equations and Stochastic Integrals

Elementary Problems

Problems

Notes

References

Chapter 16 COMPOUNDING STOCHASTIC PROCESSES

1. Multidimensional Homogeneous Poisson Processes

2. An Application of Multidimensional Poisson Processes to Astronomy

3. Immigration and Population Growth

4. Stochastic Models of Mutation and Growth

5. One-Dimensional Geometric Population Growth

6. Stochastic Population Growth Model in Space and Time

7. Deterministic Population Growth with Age Distribution

8. A Discrete Aging Model

9. Compound Poisson Processes

Elementary Problems

Problems

Notes

References

Chapter 17 FLUCTUATION THEORY OF PARTIAL SUMS OF INDEPENDENT IDENTICALLY DISTRIBUTED RANDOM VARIABLES

1. The Stochastic Process of Partial Sums

2. An Equivalence Principle

3. Some Fundamental Identities of Fluctuation Theory and Direct Applications

4. The Important Concept of Ladder Random Variables

5. Proof of the Main Fluctuation Theory Identities

6. More Applications of Fluctuation Theory

Problems

Notes

References

Chapter 18 QUEUEING PROCESSES

1. General Description

2. The Simplest Queueing Processes(M/M/l)

3. Some General One-Server Queueing Models

4. Embedded Markov Chain Method Applied to the Queueing Model(M/GI/l)

5. Exponential Service Times(G/M/1)

6. Gamma Amval Dtstnbutlon and Generalizations(Ek/M/1)

7. Exponential Service with s Servers(GI/M/s)

8. The Virtual Waiting Time and the Busy Period

Problems

Notes

References

MISCELLANEOUS PROBLEMS

Index

内容摘要:

本书是人民邮电出版社影印和翻译出版的《随机过程初级教程》的姊妹篇,内容包括马尔可夫链的代数方法、转移概率的比定理及应用、连续时间马尔可夫链、扩散过程、复合随机过程、独立同分布随机变理部分和波动理论、排队过程等很多主题。本书将理论与应用有机地结合在一起,取得了完美的平衡。
  本书适用而广,可供数学、物理学、生物学、社会学、管理学和其他工程领域的理论研究者和实践者学习。

编辑推荐:

《随机过程高级教程(英文版)》将理论与应用有机地结合在一起,取得了完美的平衡。《随机过程高级教程(英文版)》适用而广,可供数学、物理学、生物学、社会学、管理学和其他工程领域的理论研究者和实践者学习。

书籍规格:

书籍详细信息
书名随机过程高级教程站内查询相似图书
丛书名图灵原版数学
9787115191816
如需购买下载《随机过程高级教程》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位人民邮电出版社
版次1版印次1
定价(元)79.0语种英文
尺寸26装帧平装
页数 280 印数 3000

书籍信息归属:

随机过程高级教程是人民邮电出版社于2009.02出版的中图分类号为 O211.6 的主题关于 随机过程-教材-英文 的书籍。