统计和计算逆问题
统计和计算逆问题封面图

统计和计算逆问题

(芬) 芬兰 (Kaipio,J.) , 著

出版社:世界图书出版公司北京公司

年代:2014

定价:39.0

书籍简介:

本书旨在研究逆问题统计方法。内容清晰流畅,内容的主体部分没有大量引用。每章都有一节注解,将引用、深入阅读、高等科目的简短评论都囊括其中。高年级本科生、研究生以及图像处理方面的众多科研人员和专家。目次:逆问题和测量的阐释;经典正规化方法;统计逆问题;非平稳逆问题;重述经典方法;模型问题;案例研究;附录1:线性代数和泛函分析;附录2:概率论基础。读者对象:应用数学、计算物理和工程方面的学生和科研人员。

书籍目录:

Preface

1 Inverse Problems and Interpretation of Measurements

1.1 Introductory Examples

1.2 Inverse Crimes

2 Classical Regularization Methods

2.1 Introduction: Fredholm Equation

2.2 Truncated Singular Value Decomposition

2.3 Tikhonov Regularization

2.3.1 Generalizations of the Tikhonov Regularization

2.4 Regularization by Truncated Iterative Methods

2.4.1 Landweber-Fridman Iteration

2.4.2 Kaczmarz Iteration and ART

2.4.3 Krylov Subspace Methods

2.5 Notes and Comments

3 Statistical Inversion Theory

3.1 Inverse Problems and Bayes' Formula

3.1.1 Estimators

3.2 Construction of the Likelihood Function

3.2.1 Additive Noise

3.2.2 Other Explicit Noise Models

3.2.3 Counting Process Data

3.3 Prior Models

3.3.1 Gaussian Priors

3.3.2 Impulse Prior Densities

3.3.3 Discontinuities

3.3.4 Markov Random Fields

3.3.5 Sample-based Densities

3.4 Gaussian Densities

3.4.1 Gaussian Smoothness Priors

3.5 Interpreting the Posterior Distribution

3.6 Markov Chain Monte Carlo Methods

3.6.1 The Basic Idea

3.6.2 Metropolis-Hastings Construction of the Kernel

3.6.3 Gibbs Sampler

3.6.4 Convergence

3.7 Hierarcical Models

3.8 Notes and Comments

4 Nonstationary Inverse Problems

4.1 Bayesian Filtering

4.1.1 A Nonstationary Inverse Problem

4.1.2 Evolution and Observation Models

4.2 Kalman Filters

4.2.1 Linear Gaussian Problems

4.2.2 Extended Kalman Filters

4.3 Particle Filters

4.4 Spatial Priors

4.5 Fixed-lag and Fixed-interval Smoothing

4.6 Higher-order Markov Models

4.7 Notes and Comments

5 Classical Methods Revisited

5.1 Estimation Theory

5.1.1 Maximum Likelihood Estimation

5.1.2 Estimators Induced by Bayes Costs

5.1.3 Estimation Error with Affine Estimators

5.2 Test Cases

5.2.1 Prior Distributions

5.2.2 Observation Operators

5.2.3 The Additive Noise Models

5.2.4 Test Problems

5.3 Sample-Based Error Analysis

5.4 Truncated Singular Value Decomposition

5.5 Conjugate Gradient.Iteration

5.6 Tikhonov Regularization

5.6.1 Prior Structure and Regularization Level

5.6.2 Misspeeification of the Gaussian Observation Error Model

5.6.3 Additive Cauchy Errors

5.7 Diseretization and Prior Models

5.8 Statistical Model Reduction, Approximation Errors and Inverse Crimes

5.8.1 An Example: Full Angle Tomography and CGNE

5.9 Notes and Comments

6 Model Problems

6.1 X-ray Tomography

6.1.1 Radon Transform

6.1.2 Discrete Model

6.2 Inverse Source Problems

6.2.1 Quasi-static Maxwell's Equations

6.2.2 Electric Inverse Source Problems

6.2.3 Magnetic Inverse Source Problems

6.3 Impedance Tomography

6.4 Optical Tomography

6.4.1 The Radiation Transfer Equation

6.4.2 Diffusion Approximation

6.4.3 Time-harmonic Measurement

6.5 Notes and Comments

7 Case Studies

7.1 Image Deblurring and Recovery of Anomalies

7.1.1 The Model Problem

7.1.2 Reduced and Approximation Error Models

7.1.3 Sampling the Posterior Distribution

7.1.4 Effects of Modelling Errors

7.2 Limited Angle Tomography: Dental X-ray Imaging

7.2.1 The Layer Estimation

7.2.2 MAP Estimates

7.2.3 Sampling: Gibbs Sampler

7.3 Biomagnetic Inverse Problem: Source Localization

7.3.1 Reconstruction with Gaussian White Noise Prior Model

7.3.2 Reconstruction of Dipole Strengths with the e1-prior Model

7.4 Dynamic MEG by Bayes Filtering

7.4.1 A Single Dipole Model

7.4.2 More Realistic Geometry

7.4.3 Multiple Dipole Models

7.5 Electrical Impedance Tomography: Optimal Current Patterns

7.5.1 A Posteriori Synthesized Current Patterns

7.5.2 Optimization Criterion

7.5.3 Numerical Examples

7.6 Electrical Impedance Tomography: Handling Approximation Errors

7.6.1 Meshes and Projectors

7.6.2 The Prior Distribution and the Prior Model

7.6.3 The Enhanced Error Model

7.6.4 The MAP Estimates

7.7 Electrical Impedance Process Tomography

7.7.1 The Evolution Model

7.7.2 The Observation Model and the Computational Scheme

7.7.3 The Fixed-lag State Estimate

7.7.4 Estimation of the Flow Profile

7.8 Optical Tomography in Anisotropic Media

7.8.1 The Anisotropy Model

7.8.2 Linearized Model

7.9 Optical Tomography: Boundary Recovery

7.9.1 The General Elliptic Case

7.9.2 Application to Optical Diffusion Tomography

7.10 Notes and Comments

A Appendix: Linear Algebra and Functional Analysis

A.1 Linear Algebra

A.2 Functional Analysis

A.3 Sobolev Spaces

B Appendix 2: Basics on Probability

B.1 Basic Concepts

B.2 Conditional Probabilities

References

Index

内容摘要:

This book is aimed at postgraduate students in applied mathematics as well as at engineering and physics students with a firm background in mathematics. The first four chapters can be used as the material for a first course on inverse problems with a focus on computational and statistical aspects. On the other hand, Chapters 3 and 4, which discuss statistical and nonstationary inversion methods, can be used by students already having knowldege of classical inversion methods.
  There is rich literature, including numerous textbooks, on the classical aspects of inverse problems. From the numerical point of view, these books concentrate on problems in which the measurement errors are either very small or in,which the error properties are known exactly. In real world problems, however, the errors are seldom very small and their properties in the deterministic sense are not well known. For example, in classical literature the error norm is usually assumed to be a known real number. In reality, the error norm is a random variable whose mean might be known.

书籍规格:

书籍详细信息
书名统计和计算逆问题站内查询相似图书
9787510086311
如需购买下载《统计和计算逆问题》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位世界图书出版公司北京公司
版次影印本印次1
定价(元)39.0语种英文
尺寸23 × 15装帧平装
页数印数

书籍信息归属:

统计和计算逆问题是世界图书出版公司北京公司于2014.9出版的中图分类号为 O175 的主题关于 逆问题-英文 的书籍。