出版社:电子工业出版社
年代:2019
定价:69.0
图像信号本质上可以看作是关于一组基向量的稀疏表示,而稀疏表示是获得、表示和压缩图像信号的一种强有力的工具。从稀疏约束的角度来划分,可以将稀疏表示分为五类,分别为(1)基于最小化L0范数的稀疏表示,(2)基于最小化Lp(0<p<1)范数的稀疏表示,(3)基于最小化L1范数的稀疏表示,(4)基于最小化L2,1范数的稀疏表示,也交组稀疏表示和5)基于最小化L2范数的稀疏表示。在本书中,全面分析了每一种稀疏表示形式的目标函数和优化算法,并综合分析了最新的基于稀疏表示理论的应用。 本书可以作为研究稀疏表示和图像处理方面的工具书,包括了详尽的理论介绍和多方面的实际应用,全面分析了稀疏表示理论中的两个关键问题,即字典学习和正则化方法,同时,全面介绍了稀疏表示在图像处理,图像分类和追踪,图像复原等实际应用中的最新方法。
书籍详细信息 | |||
书名 | 稀疏表示理论及其在图像处理中的应用站内查询相似图书 | ||
9787121365263 如需购买下载《稀疏表示理论及其在图像处理中的应用》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 电子工业出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 69.0 | 语种 | 简体中文 |
尺寸 | 24 × 17 | 装帧 | 平装 |
页数 | 印数 |
稀疏表示理论及其在图像处理中的应用是电子工业出版社于2019.6出版的中图分类号为 TN911.73 ,O151.21 的主题关于 稀疏矩阵-应用-图象处理 的书籍。