出版社:人民邮电出版社
年代:2007
定价:69.0
本书出自近世代数领域的两位科学巨匠之手,是一本经典的教材.全书共分为15章,内容包括:整数、多项式、实数、复数、矩阵代数、线性群、行列式和标准型、布尔代数和格、超限算术、环和理想、代数数域和伽罗华理论等. 本书曾帮助过一代人理解近世代数,至今仍是一本非常有价值的参考书和教材,适合数学专业及其他理工科专业高年级本科生和研究生使用。
PrefacetotheFourthEdition
1TheIntegers
1.1CommutativeRings;IntegralDomains
1.2ElementaryPropertiesofCommutativeRings
1.3OrderedDomains
1.4Well-OrderingPrinciple
1.5FiniteInduction;LawsofExponents
1.6ivisibility
1.7TheEuclideanAlgorithm
1.8FundamentalTheoremofArithmetic
1.9Congruences
1.10TheRingsZn
1.11Sets,Functions,andRelations
1.12IsomorphismsandAutomorphisms
2RationalNumbersandFields
2.1DefinitionofaField
2.2ConstructionoftheRationals
2.3SimultaneousLinearEquations
2.4OrderedFields
2.5PostulatesforthePositiveIntegers
2.6PeanoPostulates
3Polynomials
3.1PolynomialForms
3.2PolynomialFunctions
3.3HomomorphismsofCommutativeRings
3.4PolynomialsinSeveralVariables
3.5TheDivisionAlgorithm
3.6UnitsandAssociates
3.7IrreduciblePolynomials
3.8UniqueFactorizationTheorem
3.9OtherDomainswithUniqueFactorization
3.10EisensteinsIrreducibilityCriterion
3.11PartialFractions
4RealNumbers
4.1DilemmaofPythagoras
4.2UpperandLowerBounds
4.3PostulatesforRealNumbers
4.4RootsofPolynomialEquations
4.5DedekindCuts
5ComplexNumbers
5.1Definition
5.2TheComplexPlane
5.3FundamentalTheoremofAlgebra
5.4ConjugateNumbersandRealPolynomials
5.5QuadraticandCubicEquations
5.6SolutionofQuarticbyRadicals
5.7EquationsofStableType
6Groups
6.1SymmetriesoftheSquare
6.2GroupsofTransformations
6.3FurtherExamples
6.4AbstractGroups
6.5Isomorphism
6.6CyclicGroups
6.7Subgroups
6.8LagrangesTheorem
6.9PermutationGroups
6.10EvenandOddPermutations
6.11Homomorphisms
6.12Automorphisms;ConjugateElements
6.13QuotientGroups
6.14EquivalenceandCongruenceRelations
7VectorsandVectorSpaces
7.1VectorsinaPlane
7.2Generalizations
7.3VectorSpacesandSubspaces
7.4LinearIndependenceandDimension
7.5MatricesandRow-equivalence
7.6TestsforLinearDependence
7.7VectorEquations;HomogeneousEquations
7.8BasesandCoordinateSystems
7.9InnerProducts
7.10EuclideanVectorSpaces
7.11NormalOrthogonalBases
7.12Quotient-spaces
7.13LinearFunctionsandDualSpaces
8TheAlgebraofMatrices
8.1LinearTransformationsandMatrices
8.2MatrixAddition
8.3MatrixMultiplication
8.4Diagonal,Permutation,andTriangularMatrices
8.5RectangularMatrices
8.6Inverses
8.7RankandNullity
8.8ElementaryMatrices
8.9EquivalenceandCanonicalForm
8.10BilinearFunctionsandTensorProducts
8.11Quaternions
9LinearGroups
9.1ChangeofBasis
9.2SimilarMatricesandEigenvectors
9.3TheFullLinearandAffineGroups
9.4TheOrthogonalandEuclideanGroups
9.5InvariantsandCanonicalForms
9.6LinearandBilinearForms
9.7QuadraticForms
9.8QuadraticFormsUndertheFullLinearGroup
9.9RealQuadraticFormsUndertheFullLinearGroup
9.10QuadraticFormsUndertheOrthogonalGroup
9.11QuadricsUndertheAffineandEuclideanGroups
9.12UnitaryandHermitianMatrices
9.13AffineGeometry
9.14ProjectiveGeometry
10DeterminantsandCanonicalForms
10.1DefinitionandElementaryPropertiesofDeterminants
10.2ProductsofDeterminants
10.3DeterminantsasVolumes
10.4TheCharacteristicPolynomial
10.5TheMinimalPolynomial
10.6Cayley-HamiltonTheorem
10.7InvariantSubspacesandReducibility
10.8FirstDecompositionTheorem
10.9SecondDecompositionTheorem
10.10RationalandJordanCanonicalForms
11BooleanAlgebrasandLattices
11.1BasicDefinition
11.2Laws:AnalogywithArithmetic
11.3BooleanAlgebra
11.4DeductionofOtherBasicLaws
11.5CanonicalFormsofBooleanPolynomials
11.6PartialOrderings
11.7Lattices
11.8RepresentationbySets
12TransfiniteArithmetic
12.1NumbersandSets
12.2CountableSets
12.3OtherCardinalNumbers
12.4AdditionandMultiplicationofCardinals
12.5Exponentiation
13RingsandIdeals
13.1Rings
13.2Homomorphisms
13.3Quotient-rings
13.4AlgebraofIdeals
13.5PolynomialIdeals
13.6IdealsinLinearAlgebras
13.7TheCharacteristicofaRing
13.8CharacteristicsofFields
14AlgebraicNumberFields
14.1AlgebraicandTranscendentalExtensions
14.2ElementsAlgebraicoveraField
14.3AdjunctionofRoots
14.4DegreesandFiniteExtensions
14.5IteratedAlgebraicExtensions
14.6AlgebraicNumbers
14.7GaussianIntegers
14.8AlgebraicIntegers
14.9SumsandProductsofIntegers
14.10FactorizationofQuadraticIntegers
15GaloisTheory
15.1RootFieldsforEquations
15.2UniquenessTheorem
15.3FiniteFields
15.4TheGaloisGroup
15.5SeparableandInseparablePolynomials
15.6PropertiesoftheGaloisGroup
15.7SubgroupsandSubfields
15.8IrreducibleCubicEquations
15.9InsolvabilityofQuinticEquations
Bibliography
ListofSpecialSymbols
Index
近世代数也称抽象代数,是现代数学的重要基础,主要研究群、环、域等代数结构。本书出自抽象代数领域的两位巨匠之手,曾对近世代数教学产生深远的影响,帮助了几代学子理解和掌握近世代数,至今本书仍是一部对自学和课堂教学都极具价值的参考书和教材。作者用大家热悉且具体的例子来阐述每一个概念,深入浅出,透彻简洁。为了培养学生独立思考的能力,每个专题都包括丰富的练习。 本书出自近世代数领域的两位科学巨匠之手,是一本经典的教材。全书共分为15章,内容包括:整数、多项式、实数、复数、矩阵代数、线性群、行列式和标准型、布尔代数和格、超限算术、环和理想、代数数域和伽罗华理论等。
书籍详细信息 | |||
书名 | 近世代数概论站内查询相似图书 | ||
丛书名 | 图灵原版数学 | ||
9787115162311 如需购买下载《近世代数概论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 人民邮电出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 69.0 | 语种 | 英文 |
尺寸 | 26 | 装帧 | 平装 |
页数 | 510 | 印数 |
近世代数概论是人民邮电出版社于2007.07出版的中图分类号为 O153 的主题关于 抽象代数-高等学校-教材-英文 的书籍。