递归可数集合与度量
递归可数集合与度量封面图

递归可数集合与度量

(美) 索尔 (Soare,R.I.) 等, 编著

出版社:科学出版社

年代:2006

定价:68.0

书籍简介:

本书是递归论方面的研究生教材之一,得到了国内外同行的广泛认可。

书籍目录:

Introduction

Part A. The Fundamental Concepts of Recursion Theory

Chapter Ⅰ. Recursive Functions

1. An Informal Description

2. Formal Definitions of Computable Functions

2.1. Primitive Recursive Functions

2.2. Diagonalization and Partial Recursive Functions

2.3. Turing Computable Functions

3. The Basic Results

4. Recursively Enumerable Sets and Unsolvable Problems

5. Recursive Permutations and Myhills Isomorphism Theorem

Chapter Ⅱ. Fundamentals of Recursively Enumerable Sets and the Recursion Theorem

1. Equivalent Definitions of Recursively Enumerable Sets andTheir Basic Properties

2. Uniformity and Indices for Recursive and Finite Sets

3. The Recursion Theorem

4. Complete Sets, Productive Sets, and Creative Sets

Chapter Ⅲ. Turing Reducibility and the Jump Operator

1. Definitions of Relative Computability

2. Turing Degrees and the Jump Operator

3. The Modulus Lemma and Limit Lemma

Chapter Ⅳ. The Arithmetical Hierarchy

1. Computing Levels in the Arithmetical Hierarchy

2. Posts Theorem and the Hierarchy Theorem

3. En-Complete Sets

4. The Relativized Arithmetical Hierarchy and High and Low Degrees

Part B. Posts Problem, Oracle Constructions and the Finite Injury Priority Method

Chapter Ⅴ. Simple Sets and Posts Problem

1. Immune Sets, Simple Sets and Posts Construction

2. Hypersimple Sets and Majorizing Functions

3. The Permitting Method

4. Effectively Simple Sets Are Complete

5. A Completeness Criterion for R.E. Sets

Chapter Ⅵ. Oracle Constructions of Non-R.E. Degrees

1. A Pair of Incomparable Degrees Below 0

2. Avoiding Cones of Degrees

3. Inverting the Jump

4. Upper and Lower Bounds for Degrees

5.* Minimal Degrees

Chapter Ⅶ. The Finite Injury Priority Method

1. Low Simple Sets

2. The Original Friedberg-Muchnik Theorem

3. SplittingTheorems

Part C. Infinitary Methods for Constructing R.E. Sets and Degrees

Chapter Ⅷ.The Infinite Injury Priority Method

1. The Obstacles in Infinite Injury and the Thickness Lemma

2. The Injury and Window Lemmas and the Strong Thickness Lemma

3. TheJump Theorem

4. The Density Theorem and the Sacks Coding Strategy

5.*The Pinball Machine Model for Infinite Injury

Chapter Ⅸ. The Minimal Pair Method and Embedding Lattices into the R.E. Degrees

1. Minimal Pairs and Embedding the Diamond Lattice

2.* Embedding DistributiveLattices

3. The Non-Diamond Theorem

4.* Nonbranching Degrees

5.*Noncappable Degrees

Chapter Ⅹ. The Lattice of R.E. Sets Under Inclusion

……

Part D. Advanced Topics and Current Research Areas in the R.E.Degrees and the Lattice

References

Notation Index

SubjectIndex

内容摘要:

《国外数学名著系列(影印版)31:递归可枚举集和图灵度:可计算函数与》:An Informal DescriptionFormal Definitions of Computable FunctionsPrimitive Recursive Functions.Diagonalization and Partial Recursive FunctionsTuring Computable FunctionsThe Basic ResultsRecursive Permutations and Myhills Isomorphism TheoremFundamentals of Recursively Enumerable Sets and the Recursion Theorem。

编辑推荐:

《国外数学名著系列(影印版)31:递归可枚举集和图灵度:可计算函数与》为英文影印版。《国外数学名著系列(影印版)31:递归可枚举集和图灵度:可计算函数与》是递归论方面的主要研究生教材之一,得到了国内外同行的广泛认可。

书籍规格:

书籍详细信息
书名递归可数集合与度量站内查询相似图书
丛书名国外数学名著系列
9787030182951
如需购买下载《递归可数集合与度量》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位科学出版社
版次影印本印次1
定价(元)68.0语种英文
尺寸24装帧精装
页数印数

书籍信息归属:

递归可数集合与度量是科学出版社于2007.01出版的中图分类号为 O141.3 的主题关于 递归论-英文 的书籍。