出版社:科学出版社
年代:2008
定价:36.0
1.本书从变分原理讨论线性和非线性偏微分方程,应用建立在索伯列空间上的紧致理论和方法,非线性泛函分析方法。对应用迭代方法以及逼近论方法构造性证明相关定理和数值方法紧密结合。2. 书中对数理学中经典的方程,如Navier-stokes方程,Maxwel方程组,弹性力学的Lame-Navier-Stokes方程,Secroding方程等都进行了从数学理论,观点进行讨论。3.全书建立在作者著的广义函数和索伯列夫空间线形算子和非线性算子Frechet理论,位势型算子,单调算子等基本理论之上,在书的末尾即附录给出。
第1章椭圆边值问题的变分原理
1.1抽象的变分问题
1.2混合问题和对偶原理
1.3鞍点问题的迭代法
1.4三线性和拟线性变分问题
1.5双线性形式和形式算子
1.6抽象边值问题
1.7正则性定理
1.8形式算子的谱和幂算子
第2章在椭圆边值问题中的应用
2.1线性椭圆算子
2.2边界算子
2.3Green公式
2.4三重结构和变分形式
2.5椭圆性和强制性
2.6适定性
2.7半线性椭圆边值问题
2.8拟线性椭圆边值问题
第3章一阶发展方程
3.1引言
3.2线性有界算子半群
3.3半群的无限小生成元
3.4解析半群
3.5抽象的Cauchy问题
3.6对抛物型方程的应用
3.7在某些非线性发展方程中的应用
3.8一阶线性发展方程的Galerkin的方法
第4章隐式及二阶发展方程
4.1一阶正则方程
4.2伪抛物型方程
4.3退化方程
4.4二阶正则方程
4.5Sobolev方程
4.6二阶退化方程
4.7二阶发展方程Galerkin方法
4.8一般的双曲型方程
第5章Navier-Stokes方程
5.1Stokes方程
5.2抽象的Stokes算子
5.3定常Navier-Stokes方程
5.4多解和分歧
5.5迭代解
5.6非定常Navier-Stokes方程
5.7解的估计和唯一性
5.8吸引子
5.9解的正则性和奇异性
5.10关于黏性消失问题
5.11非齐次Dirichlet边界条件问题
5.12Navier-Stokes方程解的渐近行为
第6章在数学物理中的应用
6.1在弹性力学中的应用
6.2动力弹性系统
6.3弹塑性问题
6.4Maxwell方程组
6.5磁流体动力学
6.6热动力学方程组
参考文献
附录A非线性泛函分析中的若干问题
附录B紧算子的Riesz-Schauder理论
数学物理方程是数学中最为活跃的分支之一,是数学和物理学中很多内容的基础,有助于人们从微观到宏观对物质运动规律进行认识。本书分为两大部分,第一部分是椭圆边值问题和发展方程的Hilbert空间方法对椭圆型方程而言,着重变分原理、正则性理论和变分逼近理论;对发展方程而言着重用半群理论来讨论它的适定性问题;第二部分(第5,6章)讨论力学、物理中自经典方程,如流体力学中的Navier-stokes方程、弹性力学中的Navier-Lamé方程电磁场中的Maxwell方程等,主要讨论弱解和强解的存在唯一、解的吸引子以勇解的渐近行为等,其中有些内容是20世纪80年代以后才发展起来的。 本书内容包含两个部分:一部分内容包括椭圆边值问题的变分原理、变分逼近理论和方法、发展方程的半群理论和方法;另一部分内容是关于物理力学中重要方程的讨论,如流体力学的Navier-Stokes方程、弹性力学的Navier-Lamé方程、电磁场的Maxwell方程等,并讨论了这些方程的背景、弱解和强解的存在唯一、解的吸引子、解的渐近行为以及相应的迭代逼近方法和理论等,阅读本书需要具备广义函数和Sobolev空间理论、泛函分析、初等的偏微分方程理论和方法以及数理方程等基础知识。 本书可以作为计算数学、应用数学以及力学和物理相关专业的研究生教材,对从事数学、物理、力学研究的学者也有很好的参考价值。
书籍详细信息 | |||
书名 | 数学物理方程Hilbert空间方法站内查询相似图书 | ||
丛书名 | 西安交通大学研究生系列教材 | ||
9787030201447 如需购买下载《数学物理方程Hilbert空间方法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 科学出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 36.0 | 语种 | 简体中文 |
尺寸 | 24 | 装帧 | 平装 |
页数 | 印数 |
数学物理方程Hilbert空间方法是科学出版社于2008.出版的中图分类号为 O175.24 的主题关于 数学物理方程-希尔伯特空间-研究生-教材 的书籍。