偏微分方程组中的李结构法
偏微分方程组中的李结构法封面图

偏微分方程组中的李结构法

( ) 斯托尔马克 (Stormark,O.) , 著

出版社:清华大学出版社

年代:2004

定价:

书籍简介:

本书对于偏微分方程中微分几何的研究方法提供了一个清晰综合的介绍。对于一般的PDE,特别是没有用到幂级数技巧的非线性PDE系统,本书首次介绍了局部可解性的一些实质性结论。基于Lie,Cartan,Vessiot等人的思想,本书还介绍了求解偏微分方程系统的一般方法。最根本的问题是局部可解读性问题,但是使用的方法产生了关于PDE的分类问题。另外,奇异向量场系统和在它们上的第一类积分的研究也是本书的一个中心思想。由这些自然地引出了局部李群、伪李群和等价性问题,所有的这些都在书中得到了详细地论述。本书对于偏微分方程、李群和相关领域的研究生及科研工作者是一本非常有价值的参考书。

书籍目录:

Preface 1 Introduction and summary 2 PDE systems ,pfaffian systems and vector field systems 2.1 ODE systems,vector fields and 1-parameter groups 2.2 first order PDE systems in one dependent variable,pfaffian equations and contact transformantions 2.3 Jet bundles and contact pfaffian systems 2.4 The theorem of Frobenius 2.5 Mayer's blowing-up method for proving 3 Cartan's local existence theorem 3.1 Involutions and characters 3.2 From involutions to complete systems 3.3 How general is the general solutions ? 3.4 Cauchy characteristics 3.5 Maximal involutions and integrable vector-field systems4 Involutivity and the prolongation theorem

Preface 1 Introduction and summary 2 PDE systems ,pfaffian systems and vector field systems 2.1 ODE systems,vector fields and 1-parameter groups 2.2 first order PDE systems in one dependent variable,pfaffian equations and contact transformantions 2.3 Jet bundles and contact pfaffian systems 2.4 The theorem of Frobenius 2.5 Mayer's blowing-up method for proving 3 Cartan's local existence theorem 3.1 Involutions and characters 3.2 From involutions to complete systems 3.3 How general is the general solutions ? 3.4 Cauchy characteristics 3.5 Maximal involutions and integrable vector-field systems4 Involutivity and the prolongation theorem 4.1 Independence condition and involutivity 4.2 Prolongations 4.3 Explanation of the prolongation theorem5 Drach's Classification,seceond order PDEs in one dependent variable,and Monge characteristics 5.1 The classification of Drach 5.2 Second order PDEs in on unknown and their singular vector fields 5.3 Monge characteristic subsystems 6 Integration of vector field systems satisfying 6.1 Maximal involutions 6.2 Complete subsystems 6.3 The generalized contact bracket 6.4 Reduction to a canonical form and systems of contact coordinates 6.5 How to find all maximal completes subsystems of 6.6 Contact transformations and Lie pseudogroups 6.7 Explicitly integrable systems7 Higher order contact transformations 8 Local Lie groups 9 Structual classification of 3-dimensional Lie algebras over the comples numbers 10 Lie euqations and Lie vector field systems 11 Second order PDEs in one dependent and two independent variables12 Hyperbolic PDEs with Monge systems admitting two or three first integrals13 Classification of hyperbolic Goursat equations 14 Cartan's theory of Lie pseudogroups 15 The equivalence problem16 Parabolic PDEs and associated PDEs systems 17 The equivallence problem for general 3-dimensional pfaffian systems in five variables18 Involutive second order PDE systems in one dependent and three independent variables ,solved by he method of Monge BiliographyIndex

内容摘要:

This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It is the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The book describes a general approach to systems of partial differential equations based on ideas developed by Lie, Cartan and Vessiot. The most basic question is that of local solvability, but the methods used also yield classifications of various families of PDE systems. The central idea is the exploitation of singular vector field systems and their first integrals. These considerations naturally lead to local Lie groups, Lie pseudogroups and the equivalence problem, all of which are covered in detail. This book will be a valuable resource for graduate students and researchers in partial differential equations, Lie groups and related fields.

书籍规格:

书籍详细信息
书名偏微分方程组中的李结构法站内查询相似图书
丛书名天元基金影印系列丛书
9787302090878
如需购买下载《偏微分方程组中的李结构法》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位清华大学出版社
版次影印本印次1
定价(元)语种英文
尺寸26装帧平装
页数印数 1000

书籍信息归属:

偏微分方程组中的李结构法是清华大学出版社于2004.出版的中图分类号为 O175.2 ,O152.5 的主题关于 偏微分方程-研究-英文 ,局部李群-研究-英文 的书籍。