实分析
实分析封面图

实分析

(美) 德贝内代托 (DiBenedetto,E.) , 著

出版社:高等教育出版社

年代:2007

定价:36.3

书籍简介:

本书是“天元基金影印数学丛书”之一,是一本内容十分翔实的实分析教材。它包含集论,点集拓扑,测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等。

书籍目录:

Preface

Acknowledgments

Preliminaries

1 Countable sets

2 The Cantor set

3 Cardinality

3.1 Some examples

4 Cardinality of some infinite Cartesian products

5 Orderings, the maximal principle, and the axiom of choice

6 Well-ordering

6.1 The first uncountable

Problems and Complements

Ⅰ Topologies and Metric Spaces

1 Topological spaces

1.1 Hausdorff and normal spaces

2 Urysohns lemma

3 The Tietze extension theorem

4 Bases, axioms of countability, and product topologies

4.1 Product topologies

5 Compact topological spaces

5.1 Sequentially compact topological spaces

6 Compact subsets of RN

7 Continuous functions on countably compact spaces

8 Products of compact spaces

9 Vector spaces

9.1 Convex sets

9.2 Linear maps and isomorphisms

10 Topological vector spaces

10.1 Boundedness and continuity

11 Linear functionals

12 Finite-dimensional topological vector spaces

12.1 Locally compact spaces

13 Metric spaces

13.1 Separation and axioms of countability

13.2 Equivalent metrics

13.3 Pseudometrics

14 Metric vector spaces

14.1 Maps between metric spaces

15 Spaces of continuous functions

15.1 Spaces of continuously differentiable functions

16 On the structure of a complete metric space

17 Compact and totally bounded metric spaces

17.1 Precompact subsets of X

Problems and Complements

Ⅱ Measuring Sets

1 Partitioning open subsets of RN

2 Limits of sets, characteristic functions, and or-algebras

3 Measures

3.1 Finite,a-finite, and complete measures

3.2 Some examples

4 Outer measures and sequential coverings

4.1 The Lebesgue outer measure in RN

4.2 The Lebesgue-Stieltjes outer measure

5 The Hausdorff outer measure in RN

6 Constructing measures from outer measures

7 The Lebesgue——Stieltjes measure on R

7.1 Borel measures

8 The Hausdorff measure on RN

9 Extending measures from semialgebras to a-algebras

9.1 On the Lebesgue-Stieltjes and Hausdorff measures

10 Necessary and sufficient conditions for measurability

11 More on extensions from semialgebras to a-algebras

12 The Lebesgue measure of sets in RN

12.1 A necessary and sufficient condition of naeasurability

13 A nonmeasurable set

14 Borel sets, measurable sets, and incomplete measures

14.1 A continuous increasing function f : [0, 1] → [0, 1]

14.2 On the preimage of a measurable set

14.3 Proof of Propositions 14.1 and 14.2

15 More on Borel measures

15.1 Some extensions to general Borel measures

15.2 Regular Borel measures and Radon measures

16 Regular outer measures and Radon measures

16.1 More on Radon measures

17 Vitali coverings

18 The Besicovitch covering theorem

19 Proof of Proposition 18.2

20 The Besicovitch measure-theoretical covering theorem

Problems and Complements

Ⅲ The Lebesgue Integral

1 Measurable functions

2 The Egorov theorem

2.1 The Egorov theorem in RN

2.2 More on Egorovs theorem

3 Approximating measurable functions by simple functions

4 Convergence in measure

5 Quasi-continuous functions and Lusins theorem

6 Integral of simple functions

7 The Lebesgue integral of nonnegative functions

8 Fatous lemma and the monotone convergence theorem

9 Basic properties of the Lebesgue integral

10 Convergence theorems

11 Absolute continuity of the integral

12 Product of measures

13 On the structure of (A*p )

14 The Fubini-Tonelli theorem

14.1 The Tonelli version of the Fubini theorem

15 Some applications of the Fubini-Tonelli theorem

15.1 Integrals in terms of distribution functions

15.2 Convolution integrals

15.3 The Marcinkiewicz integral

16 Signed measures and the Hahn decomposition

17 The Radon-Nikodym theorem

18 Decomposing measures

18.1 The Jordan decomposition

18.2 The Lebesgue decomposition

18.3 A general version of the Radon-Nikodym theorem

Problems and Complements

IV Topics on Measurable Functions of Real Variables

1 Functions of bounded variations

2 Dini derivatives

3 Differentiating functions of bounded variation

4 Differentiating series of monotone functions

5 Absolutely continuous functions

6 Density of a measurable set

7 Derivatives of integrals

8 Differentiating Radon measures

9 Existence and measurability of Dvv

9.1 Proof of Proposition 9.2

10 Representing Dvv

10.1 Representing Duv for v

内容摘要:

《实分析(影印版)》是一本内容十分翔实的实分析教材。它包含集论,点集拓扑。测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理,Calderon—Zygmund分解定理,Fefferman—Stein定理。Marcinkiewlcz插定理等实分析中有用的内容。
  《实分析(影印版)》内容由浅入深。读者具有扎实的数学分析知识基础便可学习《实分析(影印版)》,学完《实分析(影印版)》的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。

编辑推荐:

《实分析(影印版)》主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。《实分析(影印版)》可作为高年级本科生教材或参考书。

书籍规格:

书籍详细信息
书名实分析站内查询相似图书
丛书名天元基金影印数学丛书
9787040226652
如需购买下载《实分析》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位高等教育出版社
版次影印本印次1
定价(元)36.3语种英文
尺寸23装帧平装
页数印数 3000

书籍信息归属:

实分析是高等教育出版社于2007.10出版的中图分类号为 O174.1 的主题关于 实分析-教材-英文 的书籍。