应用偏微分方程
应用偏微分方程封面图

应用偏微分方程

汤燕斌, 吴娥子, 编

出版社:科学出版社

年代:2010

定价:24.0

书籍简介:

本书内容包括:应用偏微分方程的基本内容,重点讨论了偏微分方程中四种最基本的方程:传输方程、波动方程、热传导方程和拉普拉斯方程的特点和相应定解问题的求解方法,特别对偏微分方程模型在物理、力学等学科中的应用问题给予了极大的关注。

书籍目录:

第1章 绪论

1.1 典型方程和定解条件的物理背景和数学描述

1.1.1 牛顿运动定律与弦振动方程

1.1.2 能量守恒与热传导方程

1.1.3 静电位势与拉普拉斯方程

1.1.4 质量守恒与连续性方程

1.2 偏微分方程的基本概念

1.2.1 基本概念

1.2.2 二阶线性偏微分方程的分类

1.2.3 线性方程的叠加原理

1.3 定解问题的适定性

习题1

第2章 传输方程

2.1 一阶线性方程的特征线法

2.1.1 一阶线性常系数偏微分方程

2.1.2 种群分析与存货量分析

2.1.3 一阶线性变系数偏微分方程

2.1.4 对气体流的应用

2.1.5 一阶线性方程解的参数形式

2.1.6 三维一阶线性偏微分方程

2.2 传输方程

习题2

第3章 波动方程

3.1 一维初值问题

3.1.1 无界弦自由振动问题的行波法

3.1.2 无界弦自由振动问题的傅里叶变换法

3.1.3 依赖区间、决定区域和影响区域

3.1.4 无界弦的强迫振动问题

3.2 高维初值问题

3.2.1 三维波动方程的球面平均法

3.2.2 惠更斯原理

3.2.3 二维波动方程的降维法与泊松公式

3.2.4 波的弥散

3.3 初边值问题

3.3.1 有界弦自由振动问题的分离变量法

3.3.2 有界弦自由振动问题的积分变换法

3.3.3 有界弦强迫振动问题的特征函数展开法

3.3.4 具有非齐次边界条件的定解问题

3.3.5 圆形薄膜对称振动问题

3.4 波动方程定解问题探究

3.4.1 波动方程定解问题的齐次化原理

3.4.2 半无界弦的振动问题

3.4.3 矩形区域上波动方程的初边值问题

3.4.4 圆形薄膜振动问题

3.4.5 高频传输线中的电压波动问题

3.4.6 非齐次边界条件的齐次化

习题3

第4章 热传导方程

4.1 一维初值问题

4.1.1 无限长杆上初值问题的傅里叶变换法

4.1.2 半无限长杆上初值问题的拉普拉斯变换法

4.2 一维初边值问题

4.2.1 无热源有限长杆上初边值问题的分离变量法义

4.2.2 有热源有限长杆上初边值问题的特征函数展开法

4.2.3 具有非齐次边界条件的热传导问题

4.3 高维初边值问题

4.3.1 圆盘上轴对称热传导问题

4.3.2 无限长圆柱上对称热传导问题

4.4 热传导方程定解问题探究

4.4.1 热传导方程定解问题的齐次化原理

4.4.2 球上径向对称热传导方程的初边值问题

4.4.3 有限长圆柱上轴对称热传导问题

习题4

第5章 拉普拉斯方程

5.1 二维拉普拉斯方程的边值问题

5.1.1 矩形域上拉普拉斯方程的分离变量法

5.1.2 圆域上拉普拉斯方程的分离变量法

5.1.3 二维泊松方程的特征函数展开法

5.1.4 泊松方程的试探法

5.1.5 上半平面拉普拉斯方程的积分变换法

5.2 三维拉普拉斯方程的边值问题

5.2.1 圆柱内稳定温度分布问题的分离变量法

5.2.2 球域内稳定温度分布问题的分离变量法

5.3 拉普拉斯方程的格林函数法

5.3.1 拉普拉斯方程的基本解

5.3.2 格林公式

5.3.3 调和函数的积分表示

5.3.4 调和函数的基本性质

5.3.5 格林函数

5.3.6 格林函数的基本性质

5.3.7 上半平面的格林函数

5.3.8 圆域上的格林函数

5.4 拉普拉斯方程定解问题探究

5.4.1 长方体上拉普拉斯方程的边值问题

5.4.2 球域上拉普拉斯方程的狄利克雷外问题

5.4.3 上半空间的格林函数

5.4.4 球域中的格林函数

习题5

第6章 偏微分方程常用数学工具

6.1 傅里叶分析

6.1.1 正交函数系与正交级数展开

6.1.2 傅里叶级数

6.1.3 傅里叶积分

6.1.4 傅里叶变换

6.2 拉普拉斯变换

6.2.1 拉普拉斯变换的定义

6.2.2 拉普拉斯变换的性质

6.3 常微分方程特征值问题

6.3.1 常见线性常微分方程

6.3.2 施图姆-刘维尔特征值问题

6.4 贝塞尔方程与贝塞尔函数

6.4.1 贝塞尔方程的无穷级数解

6.4.2 贝塞尔函数的性质

6.4.3 傅里叶-贝塞尔级数

6.5 勒让德方程与勒让德多项式

6.5.1 勒让德方程的无穷级数解

6.5.2 勒让德多项式

6.5.3 勒让德多项式的性质

6.5.4 傅里叶-勒让德级数

习题6

参考文献

附录 两个自变量的二阶线性偏微分方程的分类

习题参考答案

内容摘要:

《应用偏微分方程》各个部分形成独立的模块,重点讨论了偏微分方程中四种最基本的方程:传输方程、波动方程、热传导方程和位势方程的特点和相应定解问题的求解方法,特别对偏微分方程模型在物理、力学等学科中的应用问题给予了极大的关注,目的在于将偏微分方程的基本理论与其在实际问题中的应用之间架设一座桥梁,帮助读者了解近代物理学等学科中一些重要的偏微分方程的来龙去脉,从而掌握运用这些偏微分方程解决实际问题的基本方法。

编辑推荐:

《应用偏微分方程》突出常微分方程和偏微分方程的自然联系和衔接,充分利用已经掌握的数学工具讨论偏微分方程定解问题的求解。注重自然现象和物理背景的数学描述,像弹性体的振动、电磁波的传播、热量的传导、粒子的扩散、流体的运动、种群分析和存货量分析等,从具体的自然现象出发建立各种偏微分方程及其定解条件,引导读者熟练掌握用数学理论和工具描述各种物理现象的基本方法,为进一步学习其他专业课程奠定基础。

书籍规格:

书籍详细信息
书名应用偏微分方程站内查询相似图书
9787030288769
如需购买下载《应用偏微分方程》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位科学出版社
版次1版印次1
定价(元)24.0语种简体中文
尺寸24 × 17装帧平装
页数 190 印数

书籍信息归属:

应用偏微分方程是科学出版社于2010.10出版的中图分类号为 O175.2 的主题关于 偏微分方程-高等学校-教材 的书籍。