出版社:电子工业出版社
年代:2013
定价:38.0
本书分为3篇,共15章。上篇为认识篇,从整体上观察、认识数据挖掘,使读者了解数据挖掘的各种技术,了解数据挖掘技术在商业领域中的应用概貌;中篇为技术篇,讲述数据挖掘的常用技术(聚类分析、分类方法、关联分析、离群点检测、回归分析等);下篇为案例篇,通过7个不同行业中的案例展示数据挖掘技术在不同行业的应用,所有案例采用CRISP—DM规范进行描述。
上篇 认识篇
第1章 绪论
1.1 引例
1.2 数据挖掘产生的背景及概念
1.2.1 数据挖掘产生的背景
1.2.2 数据挖掘概念
1.3 数据挖掘任务及过程
1.3.1 数据挖掘任务
1.3.2 数据挖掘过程
1.4 数据挖掘常用软件简介
1.5 数据挖掘在商业领域中的应用
1.5.1 市场营销
1.5.2 交叉销售与交叉营销
1.5.3 客户关系管理
1.5.4 个性化推荐与个性化服务
1.5.5 风险分析与控制
1.5.6 欺诈行为检测和异常模式的发现
1.5.7 供应链库存管理中的需求预测
1.5.8 人力资源管理
1.6 数据挖掘技术的前景
1.7 本章小结
第2章 数据挖掘建模方法
2.1 概述
2.2 业务理解
2.3 数据理解
2.4 数据准备
2.5 建模
2.5.1 成功建立预测模型的注意要点
2.5.2 如何建立有效的预测模型
2.6 评估
2.7 部署
2.8 本章小结
中篇 技术篇
第3章 聚类分析
3.1 概述
3.2 相似性度量
3.2.1 数据及数据类型
3.2.2 属性之间的相似性度量
3.2.3 对象之间的相似性度量
3.3 k-means 算法及其改进
3.3.1 k-means 算法
3.3.2 k-means聚类算法的改进
3.4 一趟聚类算法
3.4.1 算法描述
3.4.2 聚类阈值的选择策略
3.5 层次聚类算法
3.5.1 概述
3.5.2 BIRCH算法
3.5.3 两步聚类算法
3.6 SOM算法
3.6.1 SOM算法中网络的拓扑结构
3.6.2 SOM算法的聚类原理
3.7 聚类算法评价
3.7.1 监督度量
3.7.2 非监督度量
3.8 综合例子
3.9 本章小结
第4章 分类
4.1 概述
4.2 决策树分类方法
4.2.1 决策树的基本概念
4.2.2 决策树的构建
4.2.3 Hunt算法
4.2.4 C4.5分类算法
4.2.5 CART算法
4.2.6 C4.5 与CART算法的区别
4.2.7 决策树分类算法的优点
4.3 朴素贝叶斯分类方法
4.3.1 朴素贝叶斯算法的相关概念
4.3.2 零条件概率问题的处理
4.3.3 朴素贝叶斯算法的优缺点
4.4 最近邻KNN分类方法
4.4.1 最近邻分类的基本概念
4.4.2 KNN算法优缺点
4.4.3 KNN的扩展
4.5 集成分类器
4.5.1 集成分类器的过程描述
4.5.2 构建集成分类器的方法
4.5.3 集成分类器方法优缺点
4.6 分类方法评价
4.7 综合例子
4.8 本章小结
第5章 关联规则分析
5.1 概述
5.2 关联规则分析基础
5.2.1 基本概念
5.2.2 基础分析方法
5.3 Apriori算法
5.3.1 Apriori性质
5.3.2 Apriori算法原理
5.3.3 Apriori算法演示示例
5.3.4 Apriori算法评价
5.4 CARMA算法
5.4.1 Phase I阶段
5.4.2 Phase II阶段
5.5 产生关联规则
5.5.1 一般关联规则的产生
5.5.2 Apriori算法关联规则的产生
5.5.3 规则的评估标准
5.6 关联规则扩展
5.6.1 多层次关联规则
5.6.2 多维度关联规则
5.6.3 定量关联规则
5.6.4 基于约束的关联规则
5.6.5 序列模式挖掘
5.7 综合例子
5.7.1 概述
5.7.2 案例分析流程
5.8 本章小结
第6章 离群点检测
6.1 概述
6.2 基于相对密度的离群点检测方法
6.3 基于聚类的离群点检测方法
6.3.1 基于对象的离群因子方法
6.3.2 基于簇的离群因子检测方法
6.3.3 基于聚类的动态数据离群点检测
6.4 离群点检测方法的评估
6.5 本章小结
第7章 回归分析
7.1 概述
7.2 线性回归模型
7.2.1 多元线性回归模型的表示
7.2.2 多元线性回归模型的检验
7.3 非线性回归
7.4 逻辑回归
7.4.1 二元Logistic回归模型
7.4.2 Logistic回归模型的系数估计
7.4.3 Logistic回归模型系数的解释
7.4.4 显著性检验
7.4.5 回归方程的拟合优度检验
7.5 本章小结
第8章 为挖掘准备数据
8.1 数据统计特性
8.1.1 频率和众数
8.1.2 百分位数
8.1.3 中心度量
8.1.4 散布程度度量
8.2 数据预处理
8.2.1 数据清理
8.2.2 数据集成
8.2.3 数据变换
8.2.4 数据归约
8.3 本章小结
下篇 案例篇
第9章 Clementine使用简介
9.1 Clementine概述
9.2 Clementine数据流操作
9.2.1 生成数据流的基本过程
9.2.2 节点操作
9.2.3 数据流的其他管理
9.3 输入、输出节点介绍
9.3.1 数据源节点
9.3.2 类型节点
9.3.3 表节点
9.3.4 数据导出节点
9.4 数据预处理节点介绍
9.4.1 过滤节点
9.4.2 选择节点
9.4.3 抽样节点
9.4.4 平衡节点
9.4.5 排序节点
9.4.6 分区节点
9.4.7 导出节点
9.4.8 分箱节点
9.4.9 特征选择节点
9.4.10 数据审核节点
9.4.11 直方图节点
9.4.12 分布图节点
9.4.13 Web节点
9.5 聚类节点介绍
9.5.1 K-Means节点
9.5.2 Kohonen节点
9.5.3 TwoStep节点
9.5.4 Anomaly节点
9.6 分类节点介绍
9.6.1 C5.0节点
9.6.2 C&R Tree节点
9.6.3 BayesNet节点
9.6.4 二元分类器节点
9.6.5 Ensemble节点
9.6.6 分析节点
9.6.7 评估节点
9.7 关联分析节点介绍
9.7.1 Apriori节点
9.7.2 CARMA节点
9.7.3 Sequence节点
9.8 回归分析节点介绍
9.8.1 线性回归节点
9.8.2 逻辑回归节点
9.9 RFM分析节点介绍
9.9.1 RFM汇总节点
9.9.2 RFM分析节点
9.10 本章小结
第10章 数据挖掘在电信业中的应用
10.1 数据挖掘在电信业的应用概述
10.1.1 客户细分
10.1.2 客户流失预测分析
10.1.3 客户社会关系挖掘
10.1.4 业务交叉销售
10.1.5 欺诈客户识别
10.2 案例10-1:客户通话模式分析
10.2.1 商业理解
10.2.2 数据理解阶段
10.2.3 数据准备阶段
10.2.4 建模阶段
10.3 案例10-2:客户细分与流失分析
10.3.1 商业理解
10.3.2 数据理解阶段
10.3.3 数据准备阶段
10.3.4 建模阶段
10.3.5 评估阶段
10.4 案例10-3:移动业务关联分析
10.4.1 商业理解
10.4.2 数据理解阶段
10.4.3 数据准备阶段
10.4.4 建模阶段
10.4.5 模型评估
10.4.6 部署阶段
10.5 本章小结
第11章 数据挖掘在银行业中的应用
11.1 数据挖掘在银行业中的应用概述
11.2 案例11-1:信用风险分析
11.2.1 商业理解
11.2.2 数据理解
11.2.3 数据准备阶段
11.2.4 数据建模
11.2.5 模型评估
11.2.6 模型部署
11.3 本章小结
第12章 数据挖掘在目录营销中的应用
12.1 应用概述
12.1.1 RFM分析的基本原理
12.1.2 RFM模型的应用场景
12.2 案例12-1:Charles读书俱乐部销售
12.2.1 商业理解
12.2.2 数据理解阶段
12.2.3 数据准备阶段
12.2.4 建模阶段
12.2.5 评估阶段
12.2.6 部署阶段
12.3 案例12-2:旅游公司的目录销售
12.3.1 商业理解
12.3.2 数据理解阶段
12.3.3 数据准备阶段
12.3.4 建模阶段
12.3.5 部署阶段
12.4 本章小结
第13章 数据挖掘在零售业中的应用
13.1 数据挖掘在零售业中的应用概述
13.2 案例13-1:关联分析在超市购物篮分析中的应用
13.2.1 商业理解
13.2.2 数据理解
13.2.3 数据准备
13.2.4 建立模型
13.2.5 模型评估和应用
13.2.6 节假日和工作日的比较分析
13.3 案例13-2:超市工作时间与人员配置分析
13.3.1 商业理解
13.3.2 数据理解与准备
13.3.3 建立模型
13.3.4 模型评估与部署
13.3.5 不同时段的商品销售规律
13.3.6 时段与商品的销售规律
13.4 本章小结
第14章 数据挖掘在上市公司财务风险预警分析中的应用
14.1 数据挖掘在上市公司财务风险预警分析中的应用概述
14.2 案例14-1:上市公司财务报表舞弊识别
14.2.1 商业理解
14.2.2 数据理解与数据准备
14.2.3 模型建立与评估
14.3 案例14-2:上市公司财务困境预警
14.3.1 商业理解阶段
14.3.2 数据理解阶段
14.3.3 数据准备阶段
14.3.4 建模阶段
14.3.5 部署实施
14.4 本章小结
第15章 数据挖掘在电子商务中的应用
15.1 数据挖掘在电子商务中的应用概述
15.2 主要应用领域
15.2.1 网络客户关系管理
15.2.2 网站设计优化
15.2.3 推荐系统
15.3 案例15-1:基于关联分析的淘宝网推荐
15.3.1 商业理解阶段
15.3.2 数据理解阶段
15.3.3 数据准备阶段
15.3.4 数据建模
15.3.5 模型评估
15.3.6 部署阶段
15.4 案例15-2:协同过滤技术在电影推荐上的简单应用
15.4.1 协同过滤推荐简述
15.4.2 商业理解阶段
15.4.3 数据的理解、收集及准备
15.4.4 建模阶段
15.4.5 模型评估和部署
15.5 本章小结
附录A 数据挖掘常用资源列表
参考文献
《商务数据挖掘与应用案例分析》由认识篇、技术篇和案例篇三部分组成,以商业领域中的问题为背景,重点在于讲解数据挖掘技术的应用。认识篇从整体上介绍了数据挖掘的各种技术和数据挖掘建模过程,可使读者了解数据挖掘技术在商业领域中的应用概貌;技术篇介绍了数据挖掘中的聚类分析、分类、回归、关联规则挖掘、离群点检测等方法;案例篇展示了数据挖掘在6个不同行业中的应用案例,期望通过案例的分析使读者能够理解如何应用数据挖掘技术解决商业领域中的问题。
书籍详细信息 | |||
书名 | 商务数据挖掘与应用案例分析站内查询相似图书 | ||
9787121222115 如需购买下载《商务数据挖掘与应用案例分析》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 电子工业出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 38.0 | 语种 | 简体中文 |
尺寸 | 18 × 26 | 装帧 | 平装 |
页数 | 316 | 印数 |
商务数据挖掘与应用案例分析是电子工业出版社于2013.12出版的中图分类号为 F715 的主题关于 商务-数据采集-高等学校-教材 的书籍。